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ABSTRACT 

 In this dissertation, the studies aim to characterize the electronic structure at the internal 

interface of hybrid materials. The characterization challenge is originating from the spectral 

superposition of hybrid constituents. A characterization protocol based on photoemission 

spectroscopy (PES) was developed and applied to investigate the orbital alignment at the internal 

interface of the oligothiophene-TiO2 and ArS-CdSe hybrid materials by characterizing the 

individual constituents and the assembly hybrids respectively. Electrospray deposition technique 

was used to deposit targeting materials which enabled preparation of thin films in vacuum 

minimizing ambient contaminations while transmission electron microscopy (TEM) was used to 

investigate the morphology and the particle size of the pure nanoparticles and the hybrids. 

Ultraviolet-visible (UV-vis) spectroscopy was also used in the estimation of the optical band gap 

of the pure nanoparticles and the HOMO-LUMO gap of the organic ligands. 

 One of the hybrid materials studied in this dissertation is oligothiophene-TiO2 

nanoparticle hybrids in which the oligothiophene ligands are bonded to the surface of TiO2 

nanoparticles covalently. This hybrid system was used to develop and demonstrate a 

measurement protocol to characterize the orbital alignment at the internal interface. Low 

intensity X-ray photoemission spectroscopy (LIXPS) was used to determine the work function of 

the oligothiophene ligands and the TiO2 nanoparticles. In combination with the highest occupied 

molecular orbital (HOMO) cutoff and the valence band maximum (VBM) measured by 

ultraviolet photoemission spectroscopy (UPS), the ionization energies (IE) of these two 

vi 
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constituents were determined. X-ray photoemission spectroscopy (XPS) was used to characterize 

the core level emissions of the constituents and the hybrid assembly, which were used to 

determine the charge injection barriers at the internal interface.  

 The results showed that there was an interface dipole at the internal interface between 

organic and inorganic constituents of the hybrid. The dipole was determined to be 0.61 eV and 

the hole injection barrier at the internal interface amounted to 0.73 eV. The electron injection 

barrier was estimated by taking into account the gap between highest occupied and lowest 

unoccupied molecular orbitals (HOMO, LUMO). The procedure followed only suggested the 

presence of an insignificant barrier in the oligothiophene-TiO2 nanoparticle hybrids. 

 Arylthiol functionalized Cadmium Selenide (ArS-CdSe) is a novel hybrid material which 

can be used in hetero-junction solar cells. The ArSH ligands are bonded on the surface of the 

CdSe nanoparticles covalently through sulfur atoms serving as anchors. The internal interface in 

the ArS-CdSe hybrids between the organic constituent and the inorganic constituent was studied 

by the same characterization protocol developed in this dissertation. Furthermore, a physisorbed 

interface between the ArSH ligands and the CdSe nanoparticles was created through multi-step 

in-vacuum deposition procedure. The electrospray deposition technique enabled the formation of 

a well-defined physisorbed interface which was characterized by LIXPS, UPS and XPS for each 

deposition step. Accordingly, the orbital alignment at the physisorbed interface was determined. 

 Based on the results obtained, detailed orbital alignments at the ArSH/CdSe physisorbed 

interface and the internal interface in the ArS-CdSe hybrid materials were delineated and 

discussed. The hole injection and electron injection barrier at the physisorbed ArSH/CdSe 

interface are 0.7 eV and 1.0 eV respectively. An interface dipole of 0.4 eV was observed at the 

interface. In the ArS-CdSe hybrid materials, the electronic system of the ArSH component shifts 
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down due to the charge transfer induced by the covalent hybridization. The hybridization also 

shifts the electronic system of the CdSe constituent to a lower energy level due to saturation of 

the unoccupied bonds of the Cd atoms on the surface. The hole injection barrier and electron 

injection barrier were determined to be 0.5 eV and 1.2 eV respectively. A small interface dipole 

(0.2 eV) was observed at the internal interface as a result of the presence of covalent bonds. 
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CHAPTER 1: MOTIVATION AND INTRODUCTION 

1.1: Motivation and Outline of this Dissertation 

 Due to the current rising concerns regarding environmental hazards associated with the 

massive use of fossil fuels, there has been a great shift toward developing alternative 

environmentally sustainable sources of energy [1]. Back in 1959 when Richard Feynman 

declared the tremendous potential of nanotechnology with his famous statement that “There’s 

plenty of Room at the Bottom”, revolutionary developments in nano-scale technology have 

brought about dramatic changes to every aspect of the human life [2]. The use of nano-scale 

technology has been more dominant in the field of energy where nanotechnology offers better 

tools that can be used in the development of new environmentally friendly energy generation 

solutions such as solar economy, hydrogen economy and sustainable electricity storage [3]. In 

the core of nanotechnology, materials with nano-scale dimensions are an intriguing essence due 

to their novelty and enhanced properties compared to traditional materials [4, 5]. Nano-scale 

materials differ from traditional materials not only in terms of their characteristic scale, but also 

in regard to their new physical properties which offer new possibilities that can be realize various 

technological applications.  

 In the field of photovoltaic devices, nano-materials are increasingly attractive due to their 

tunable band gap which can be achieved through size adjustment as well as their excellent carrier 

transportation ability and solution processable fabrication [6-8]. Photovoltaic process converts 

sunlight directly into electricity by absorbing solar energies which match the optical band gap of 
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the materials. The basic design principle is to use materials with suitable optical band gap 

enhancing the light absorption as well as to create an interface with desirable charge injection 

barriers. TiO2 nanoparticles with a wide band gap are used in the application of dye-sensitized 

solar cells in which organic molecules act as redox dyes. Such devices have achieved acceptable 

high power conversion efficiency of above 12% [9]. CdSe nanoparticles are another attractive 

nanomaterial with high carrier mobility and suitable band gap that can be applied in the field of 

photovoltaic devices [10]. In particular, the properties of CdSe nano-materials can be refined 

during the procedure of synthesis by adjusting their size and shape [11]. By mixing CdSe 

nanoparticles with low band gap polymer, bulk-hetero-junction solar cells can be fabricated with 

solution-based roll-to-roll process [12].  

 In the photovoltaic process of converting absorbed sunlight into electricity, Frenkel 

excitons with large binding energies (0.4 to 1.0 eV) and short diffusion lengths (5 to 20 nm) are 

generated in organic/nanoparticle based solar cells [13, 14]. The key of dissociating excitons into 

free charges is to create a hetero-junction with suitable energy band offsets and an environment 

that allows fast diffusion of excitons to the interface [15, 16]. Further advanced research on 

nano-materials focuses on the development of more complex molecular structures. In these 

structures, the core nano-material is capped with an outer organic layer which serves multiple 

functional purposes in order to break a longstanding bottle neck on the path of achieving higher 

power conversion efficiency [17, 18]. A novel hybrid nanomaterial which consists of two or 

more covalently-linked and electronically-coupled semiconductor components is developed to 

fully utilize the advantages brought by the both constituents. Figure 1 shows the schematic of a 

proposed hybrid structure in which the inorganic nanoparticle is bonded with organic ligand 

through covalent bonds.  
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Figure 1: Schematic of a hybrid structure. The hetero-junction interface is realized through 
covalent bonds. The inorganic nanoparticle can be various semiconductor nanoparticles with 
desired properties. The organic constituent is not limited to small molecules. Polymers with a 
lower band gap and better charge mobility are ideal for the hybrid structure.   

The surface and internal interface properties of hybrid nano-materials are essential for the 

device performance. To determine and understand the orbital alignment in the hybrid materials 

makes great contributions in the development of the novel hybrid materials with desired 

electronic properties.  Photoemission spectroscopy (PES) is a powerful and popular tool to 

characterize the surface and interface properties [19, 20]. Low intensity x-ray photoemission 

spectroscopy (LIXPS) uses low photon flux to measure secondary electrons which can provide 
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valuable information of sample work function. X-ray photoemission spectroscopy (XPS) probes 

the deep core-level emission features from which valuable information about chemical 

interaction can be extracted. Ultraviolet photoemission spectroscopy (UPS) measures the density 

of states in valence bands (VB)/ highest occupied molecular orbitals (HOMO) of the targeting 

sample directly [21, 22]. In combination of PES measurements with in-vacuum electrospray 

deposition technique, the surface and interface characterization of hybrid nano-materials can be 

achieved. 

This dissertation focuses on the development of a PES based characterization protocol to 

measure the internal orbital alignment of hybrid nano-materials. The first part of the dissertation 

addresses the challenge with hybrid internal interface characterization due to the bonded parts in 

hybrid materials cannot be deposited individually resulting in a superimposed spectrum of both 

densities of state. A sequence of experiments is meticulously designed to obtain electronic 

information from individual parts and the bonded hybrid assembly. 

The second part of this dissertation applies the developed characterization protocol to 

different hybrid materials. The first hybrid system studied is oligothiophene-TiO2 hybrid 

materials in which the oligothiophene ligands are bonded to the surface of TiO2 nanoparticles 

covalently using carboxyl groups as anchors. Experimental data with regarding to the electronic 

structure of oligothiophene ligands, TiO2 nanoparticles and oligothiophene-TiO2 hybrids were 

collected and used to characterize the internal orbital alignment in hybrids. The second hybrid 

material is ArS-CdSe hybrid materials in which the organic ArSH ligands are bonded with CdSe 

nanoparticles through sulfur atoms covalently. By applying the same protocol, the internal orbital 

alignment of ArCdSe hybrids was determined and discussed. Furthermore, a physisorbed 
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interface between the ArSH ligands and the CdSe nanoparticles were created via multi-step in-

vacuum deposition and characterized to compare with the internal interface. 

1.2: Properties of Semiconductor Nanoparticles  

 In the early 1980s, semiconductor particles with sizes in nano-scale have received much 

attention. The material system relies on the transition regime from the bulk solid to molecules. It 

is a fascinating material system for researching and studying novel properties which are 

attributed to size-quantization effect. Atomic orbitals are well known fingerprints of atoms. For a 

single atom the orbital energies are attributed to the ground-state electron configuration. Figure 2 

shows the evolution of the electronic structure from an atom to bulk materials. The density of 

states (DOS) within a band is typically related to the number of atoms. The combination of 

several atoms creates small molecules in which the anti-bonding and bonding states are related to 

orbital electron spinning. In a molecule electron orbitals are shared between atoms. However, 

only the lowest energy levels are occupied. The electronic structure of nanoparticles strongly 

depends on the size and shape due to the quantum confinement effects. The confinement arises 

as a result of changes density of states. For a free particle or a particle in bulk semiconductor 

material, both of the energy and momentum can be precisely defined and determined. However, 

for a defined particle in nano-scale, only the energy may still be well defined. Since the 

momentum cannot be well defined, the superposition of momentum states gives rise to a 

compression of energy states by quantum confinement [23].  
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Figure 2: Evolution of the electronic structure from a single atom to bulk semiconductor. As for 
a single atom, the electrons stay at confined orbitals. With the increase of atom number, the 
discrete band structure becomes continued. The band gap energy decreases from nano-materials 
to bulk materials.   

  An electron excited from valence bands by absorbing a photon with quantized energy 

moves to conduction bands and a hole is left behind. The electron-hole pairs are still confined by 

attractive Coulomb forces resulting in the formation of Wannier excitons. The paired exciton 

system can be described by a two-particle Hamiltonian since it is similar as a hydrogen atom. 

The diameter of the Wannier excitons depends on the effective masses of electrons and holes as 

well was the high-frequency dielectric constant, as shown in Equation (1).  

𝑑 =  ℏ
2𝜀
𝑒2

 � 1
𝑚𝑒
∗  + 1

𝑚ℎ
∗ �                                                                 (1)  
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 However, as for a nanoparticle, the particle diameter is comparable to the diameter of the 

exciton in bulk material. As a result, the continuous band structure is split into discrete levels as 

illustrated in Figure 2. It shows that with decreasing particle size the energy of the lowest excited 

state, which is known as conduction bands minimum, increases resulting in the increase of band 

gap. Thus, the major consequence of the quantum confinement effect on semiconductor 

nanoparticles is the particle size dependence of the band gap. The band gap increases as the 

particle size decreases while the energy states are quantized. The size dependence has been 

demonstrated by the dramatic color change of the CdSe colloidal solutions with different particle 

sizes, shown in Figure 3. 

 

Figure 3: Experimental demonstration of the band gap dependence on the particle size. The CdSe 
nanoparticle size changes 1.5 to 4.5 nm from left to right [24]. 
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Besides the phenomenal orbital structures, large surface area to volume ratio is another 

key property of nanoparticles. In bulk materials, atoms on the surface only represent a negligible 

fraction of the total number of atoms. Nevertheless, with the decrease of particle size, the ratio of 

the surface atom number to the total number increases dramatically. The large surface area to 

volume ratio has significant effects on the properties of nanoparticles in isolation as well as the 

interaction with other materials. It is a crucial factor in the performance of catalysis and 

electrodes whose improvements are directly related to the technology development [25, 26]. The 

large ratio also enhances the interaction in intermixed nanocomposites, leading improved 

strength and chemical/heat resistivity [27, 28]. The high surface area to volume ratio can be 

crucial to in dye-sensitized solar cells and nanoparticle/organic hybrid solar cells since a large 

interfacial contact area facilitates the charge separation and transportation [29, 30].  

1.3: Organic/Inorganic Hybrid Solar Cells 

Solar energy is a clean, abundant and renewable energy source which can be converted 

into electricity by photovoltaic devices. For conventional solar cells, the efficiency has climaxed 

up to 44.7% through the use of expensive materials and complex stacking technology. In order to 

fabricate large scale and low cost solar cells, new technologies are required. To date, a broad 

range of photovoltaic technologies is in development, such as dye-sensitized solar cells, 

polymer/fullerene bulk hetero-junction solar cells, small molecule thin films solar cells, 

organic/inorganic hybrid solar cells, et al. [31-34].  

Hybrid solar cells are generally a mixture of both organic and inorganic materials. 

Therefore, the unique properties of inorganic semiconductor nanoparticles and the properties of 

organic materials are combined in such devices. Organic-inorganic hybrid solar cells  which are 

based upon physically blending conjugated polymer and nanoparticles have attracted a lot of 
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attention [33]. The basis of such solar cells is the bulk hetero-junction concept. These hybrid 

active layers have combined the advantages from nanoparticles and conjugated polymers, such 

as tunable band gap, large surface to volume ratio, excellent charge carrier mobility, solution 

processability and good environmental stability [35-37]. Physically blending organic polymers 

with inorganic nanoparticles is a simple fabrication process. However, the physisorbed interface 

impedes the charge separation and transportation due to the incompatible organic/inorganic 

interface, the insulating capping ligands and small interfacial area [38, 39].  

Basically, a solar cell is a device which can convert solar energy into electricity by 

absorbing photons. For a conventional inorganic semiconductor based solar cell, electrons in the 

valence band (VB) are excited up to the conduction band (CB) when the energy of incident 

photons is matching to the band structure for absorption [40, 41]. The photon generated free 

electrons and holes will diffuse to the corresponding collection electrodes resulting a 

photocurrent which can be used as energy source. However, in an organic-inorganic materials 

based hybrid solar cell, an incident photon will generate an exciton which is an electron-hole pair 

bound by strong Coulomb force, as shown in Figure 4. The typical binding energy of this 

electron-hole pair is ~0.1-0.5 eV which is larger than the thermal energy. Thus, the photon 

generated excitons cannot be dissociated in the absorbing layer. The excitons have to diffuse to 

the donor-acceptor interface at which the energy offset between the organic donor LUMO and 

the inorganic acceptor conduction band minimum can dissociate excitons into free charges [42]. 

These free charges are then transported within the materials and collected by corresponding 

electrodes. The state-of-the-art in this hybrid solar cell is that excitons can also be generated in 

the inorganic acceptor. The excitons generated in the inorganic acceptor which is nanoparticles 

in this dissertation are bound by Coulomb force as well [43, 44]. The dissociation of these 
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excitons also requires higher energy than thermal energies. In order to get free charge carriers, 

these excitons have to rely on the band energy offset at the interface. 

 

 

Figure 4: Schematic demonstration of the working mechanism of hybrid solar cells with organic 
materials as donors and inorganic materials as acceptors. 

The advantages of hybrid strategy are significant and related to the combined properties 

of inorganic and organic materials. The inorganic acceptors can have high absorption 

coefficients which enable the light absorption of both parties. Within the synthesis process, the 

doping level of nanoparticles can be changed easily so that the charge transfer between donors 

and acceptors can be studied systematically. The band gap in inorganic nanoparticles can be 

tuned easily through size modification, realizing novel tandem architectures in which same 
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materials with different band gaps can be obtained. Furthermore, the large surface to volume 

ratio of inorganic nanoparticles provides a substantial interfacial area for exciton-dissociation 

and charge-transfer.  

The power conversion efficiency of hybrid solar cells strongly depends on orbital 

alignments of the donor and acceptor at the interface. Many efforts have been made to control 

the film morphology and interfacial area [45, 46]. However, simply be physically blending 

donors and acceptors makes challenges to achieve efficient charge dissociation and 

transportation. In this perspective, a promising strategy is to realize covalent contacts between 

donors and acceptors to reduce the diffusion length of excitons and creating larger interfacial 

area.  

1.4: Orbital Alignment at Semiconductor Interfaces 

  The main objective and focus of this dissertation is to determine of the internal orbital 

alignment in hybrid materials. The electronic structure of semiconductors can be illustrated in 

band diagrams. Figure 5 (A) shows a typical band structure of a n-type semiconductor i.e., the 

Fermi level is close to the conduction band due to the excessive of electrons. The work function 

Ψ is defined as the energy difference between the Fermi level and vacuum level i.e., the 

minimum energy required to remove an electron from the solid surface [47]. The valence band 

maximum (VBM) or highest occupied molecular orbital (HOMO) cutoff refers to the energy 

difference from the Fermi level to EVB/HOMO. 

 As in a metal, all energy states are filled with electrons up to the Fermi level. In 

comparison to metals, semiconductors are defined by their unique band structure. The band 

structure is associated with the quantum states of electrons. Therefore, the work function of 

semiconductors is not the same as the electron affinity (χ) in metals which is the energy 
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difference between the conduction band minimum and vacuum level. For a semiconductor, the 

ionization energy is the energy difference between the valence band maximum and vacuum level. 

The semiconductors can be doped to adjust the conductivity and band structure. Meanwhile the 

electronic structure at the surface is different as it in the bulk. A great amount of defects are on 

the surface of semiconductors. The resulted surface states can change the orbital alignment on 

the surface dramatically. Thus it is crucial to understand and investigate the surface state of 

semiconductors.   

 

Figure 5: Semiconductor electronic structure, (A) a typical band structure, (B) orbital alignment 
at semiconductor interface. 

When two different semiconductors make contact, a hetero-junction will be formed 

resulting in an orbital realignment at the interface according to the different electron affinity. The 

orbital alignment at a hetero-junction interface can be illustrated in Figure 5 (B). The first band 

alignment model was developed by Schottky to describe band offsets at the interface between 
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metals and semiconductors [48]. Then this model was developed and extended by Anderson to 

describe hetero-interfaces between semiconductors in 1962 [49]. Typically the orbital alignment 

at hetero-junction interfaces depends on the alignment of vacuum level. As the alignment of 

vacuum levels, bands offsets i.e., charge injection barriers are formed at hetero interfaces. When 

an electron is excited from the valence band into the conduction band, this electron can move 

freely in the conduction band. Thus the band offset between two conduction bands refers to the 

electron injection barrier shown as Фe in Figure 5 (B). The valence band offset is termed as the 

hole injection barrier (Фe) to describe the energy needed for holes to overcome during the 

transportation. However, the Anderson model explains band offsets from the viewpoint of bulk 

properties of semiconductors. It fails to consider the surface states and physico-chemical 

phenomena at the interface due to the chemical environment changes. In experimental studies, an 

interface dipole (eD) is usually observed as a result of charge transfer at the interface [50, 51]. 

Thus, neither the Schottky model nor the Anderson model can be applied to describe hetero 

interfaces because interface dipoles are not considered in these models. 

At semiconductor hetero interfaces, thermal equilibrium is achieved through charge 

transfer due to the different work function. When many surface states are concentrated within the 

band gap, the Fermi level is required to be equalized i.e. Fermi level pinning happens cross the 

interface [52]. As a result of Fermi level pinning, energy states out of band gap give rise to an 

interface dipole as an offset at vacuum level. Accordingly, the orbital alignment based on this 

concept is illustrated in Figure 5 (B) taking the interface dipole into account as a consequence of 

Fermi level pinning effects. 

Specifically, the orbital alignment at organic/inorganic interfaces do not follow the 

Anderson model due to the physico-chemical interaction at the interface which results in the 
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formation of interface dipoles. As for organic-inorganic hybrid materials, the covalent bonds 

which connect organic molecules to inorganic materials have non negligible influences on the 

orbital alignment. However, such influences are still unclear due to the characterization 

challenge. In this dissertation, the orbital alignment at the organic/inorganic interface is 

presented with examples of oligothiophene/TiO2 and ArSH/CdSe hybrid materials to study the 

influence of hybridization through covalent reactions.  
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CHAPTER 2: EXPERIMENTAL METHODOLOGY 

 The samples used in the study that this dissertation is based on were prepared by in situ 

electrospray deposition technique. This technique enables direct deposition of various molecules 

onto a substrate in the vacuum chamber minimizing ambient contaminations while maintaining 

complete chemical structures. The details of this deposition technique will be discussed in this 

chapter. Sputter cleaned Au slides and highly ordered pyrolytic graphite (HOPG) were used as 

sample substrates. The Au substrate was sputter cleaned in a preparation chamber before 

transferred into the deposition chamber. The HOPG substrates were prepared in a home-made 

glove box which was connected with the main analysis chamber. The electronic structure of the 

targeting sample was characterized with photoemission spectroscopy (PES). Thus, theories and 

setup of PES measurements including X-ray photoemission spectroscopy (XPS) and ultra-violet 

photoemission spectroscopy (UPS) will be introduced in this chapter in details. 

2.1: Electrospray Deposition Technique 

 The newly developed applications based on macromolecular materials require suitable 

and indestructible film deposition techniques. Typically, these materials can be deposited using 

spin-coating, dip-coating and ink-jet printing techniques [29, 53, 54]. The advantage of these 

techniques is that they can be performed easily in ambient atmosphere. However, the 

disadvantage of these techniques is also obvious. Exposing contaminations from ambient 

atmosphere can induce unknown factors to surface characterizations and device performances. 

Molecule evaporation is a deposition technique which can be used to deposit macromolecules in 
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vacuum. However, it requires high temperature to be applied in order to evaporate 

macromolecules from solid phase to gas phase. Since macromolecules can be easily dissociated 

under high temperature, it is not an ideal way to deposit macromolecule thin films [55]. 

Therefore, a deposition method which can make macromolecules deposition directly in vacuum 

without any contaminations and damages is needed. 

A solution to this challenge relies on electrospray deposition technique which enables the 

indestructible deposition of various materials from solution into vacuum. Conjugated polymers, 

nanoparticles, biomolecules, living cells and other macromolecules have been deposited 

successfully by this technique [56-61]. In this indestructible deposition method, the solution 

containing the targeted material is injected from a capillary. A high voltage is used to nebulize 

and ionize the aerosol phase solution which is further drawn into a vacuum chamber through a 

tunnel orifice. The targeted material will be deposited onto a prepared clean substrate in the 

chamber. The entire deposition process is thermal free and avoids ambient contaminations as the 

best.  

The electrospray deposition technique is originated from electrospray ionization mass 

spectrometry (ESIMS) which was developed by Fenn et al. to characterize large molecules [62]. 

The molecules are sprayed in their gas phase and ionized in a preset electric field to realize 

charge separation. This deposition method can be integrated with a multi-chamber photoemission 

spectroscopy (PES) system as a powerful tool in surface and interface characterization. An in-

situ material deposition followed by PES measurements enables multi-step investigations on the 

film while the film thickness can be controlled with a sub-monolayer level [63].  
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Figure 6: Schematic of the electrospray deposition technique and the mechanism. Ejected 
droplets are ionized by a high voltage across the capillary and substrate. Solvent molecules are 
separated from the targeted molecules through coulomb explosions and extracted out of the 
system by vacuum pumps. 

 The mechanism of an electrospray deposition process is illustrated in Figure 6. The 

solution containing targeting materials is prepared with a certain concentration (in mg/mL range) 

and loaded into a syringe with an injection capillary. The capillary tip is made of stainless iron 

on which a high voltage is applied to provide required electric field during the deposition. In the 

experiments presented here, a negative 2000 voltages was applied. The molecules in the solution 
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are nebulized and ionized in this applied electric field. The generated anions will be accelerated 

in the field while the cations will be expulsed away after they leave the capillary tip. To be 

specific, the injected solution forms a Taylor-cone which will dissociate into a three dimensional 

plume at the tip of the capillary [64]. The plume consists of small solution droplets which will be 

extracted from the Taylor-cone and ionized by the applied high potential. An N2 environment is 

provided around the orifice to prevent ambient contaminations. After the droplets enter the 

orifice, solvent molecules will evaporate with assistance from the differential pumping stages 

during the flight. As the droplets shrink, the charge density will increase to a point where the 

Coulomb forces can overcome the surface tension. Then Coulomb explosions are induced to 

further separate the targeted material from the solvent. The substrate in the vacuum chamber is 

grounded. The potential difference between the capillary tip and the substrate can provide 

enough electrostatic forces to drive the injected liquids flying towards the substrate. Eventually, 

a thin film of the targeting material can be formed uniformly.   

2.2: Photoemission Spectroscopy 

 Photoemission spectroscopy (PES) is the main characterization method used in this 

dissertation. In PES measurements, the occupied states of electrons in a sample are investigated 

by exposing the sample to a specialized radiation. The incident radiation excites electrons from 

the ground state to the final state resulting in the generation of photoelectrons which can be 

captured and analyzed through an analyzer. This characterization technique originates from the 

photoelectric effect which was first observed by Hertz in 1887 [65]. In 1905, Einstein explained 

this phenomenon with the famous photoelectric effect theory [66]. In 1950s, a high resolution 

photoelectron spectrometer was made by Siegbahn and his co-workers [67]. Up to date PES 
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system has improved resolution below 1 eV and is used as a powerful characterization method in 

various fields. 

2.2.1: The Physical Principle of Photoemission Spectroscopy 

 Different radiation sources, such as a gas-discharge lamp, an X-ray tube or a synchrotron-

radiation setup, can be used to generate monochromatic radiation in PES measurements. The 

incident photons are transported and absorbed by the material to excite electrons into unoccupied 

states. If the final state of photoelectrons is above the vacuum level, the photoelectrons can be 

emitted out of the material into vacuum. Einstein’s photoelectric equation can be used to 

describe the kinetic energy Ekin of the emitted electrons: 

Ekin = hν – EB – Φ                                                                  (2) 

in which, hν is the energy of the incident photon, EB is the binding energy of the pre-excited 

electron and Φ is the work function of the material. The energy level of a sample and its 

corresponding PES spectrum are shown in Figure 7. The energy level of the sample consists of 

the valence bands and the core levels with characteristic emission features as shown on the 

bottom left in Figure 7. If the material investigated is a metal, the Fermi level will be located at 

the same energy level as the valence band onset, indicating that there is no band gap in the 

electronic structure. The energy difference between the Fermi level and the vacuum level is 

called work function and termed as Φ which refers to the minimum energy needed to remove 

electrons from the material surface. As manifesting in the spectrum, the secondary edge 

originating from secondary electrons which lose kinetic energy during inelastic collisions can be 

used to calculate the work function. If a photoelectron is excited and emitted from a core level or 

a valence state without suffering any inelastic collisions, it is called a prime electron and its 

19 
 



www.manaraa.com

kinetic energy Ekin can be measured by a spherical electron analyzer. The number of 

photoelectrons with the same kinetic energy is counted. Then a spectrum can be plotted as the 

number of photoelectrons vs. various kinetic energies. Typically, both of the prime 

photoelectrons and the secondary electrons can be seen in the spectrum as shown in Figure 7.  

 

Figure 7: The energy levels of a sample obtained from PES measurements. The relation between 
the energy of incident photons and the kinetic energy of emitted electrons is illustrated. 

 The ionization cross section is an important factor in PES measurements because it 

relates to the possibility of electrons to be excited out of the locating orbital by incident photons. 

The ionization cross section varies from orbitals and elements and depends on the energy of 
20 

 



www.manaraa.com

incident photons as well [68]. The intensity and noise to signal ratio of a spectrum are strongly 

depended on the ionization cross section. Therefore, it is important to keep it in mind while 

performing PES measurements. 

 The penetration depth of incident photons is in the range of microns and varies from 

material to material. However, the excited photoelectrons can only travel within a material 

before their kinetic energy are consumed completely by inelastic collisions with other electrons 

or nucleus during the travelling. The path for excited electrons without suffering inelastic 

collisions is defined as an inelastic mean free path λ which is only in the range of angstroms. 

Figure 8 shows the universal plot of the electron mean free path as a function of the kinetic 

energy. In the range of 10 to 2000 eV which is the range where PES measurements are carried 

out, the electron mean free path is only a few Å. This means that PES can only detect the density 

states from a very thin layer even though the electrons within a thick layer can be excited. It is 

worthy to mention that the mean free path is material dependent and related to the material 

bonding structure. Theoretically, the mean free path for different materials can be calculated. But 

it is mostly determined by empirical experiments. The fact that excited photoelectrons can only 

travel a few Å without suffering any inelastic collisions makes PES a powerful characterization 

method to study surface properties. 

  Once an electron is excited from its ground state to its final state escaping from the 

material surface, the neutral atom turns to be ionized leaving a photo-generated hole behind. 

However, the positive charging environment near the left-over nucleus is energetically 

unfavorable. As a result, the remaining electrons have to be in a relaxed situation in order to 

screen the positive charges from each other. This is called final state effects. During PES 

measurements, the photoemission process is slower than the relaxation process in approximately 
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one magnitude. Therefore, PES measurements are sensitive to final state effects. The recorded 

PES spectra are characteristics of the excited electrons in their final states in which the 

polarization energy impacts the binding energy of detected electrons [69]. 

 

Figure 8: The universal plot of the electron mean free path as a function of the kinetic energy 
[70].  

2.2.2: X-ray Photoemission Spectroscopy (XPS) 

 X-ray photoemission spectroscopy (XPS) is a type of PES which is used to probe 

material core levels by incident photons in X-ray range. The general X-ray source is Mg Kα1,2 

line with 1253.6 eV photon energy created by electrons colliding with a Mg anode. The electrons 

in core-level states are excited and collected by an analyzer. The core-level electrons have 
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important information on the elemental composition which can be identified by plotting the 

counted number of photoelectrons (intensity) vs. binding energy. An example of XPS spectrum 

is shown in Figure 9. It is a typical XPS survey spectrum of a sputter cleaned Au. The emission 

features corresponding to core-level states can be identified clearly as characteristics for Au. As 

for a wide-scan survey spectrum, it serves as the basis for the determination of the elemental 

composition of a targeting sample. It has a higher peak intensity than a high-resolution scan at 

the expense of losing resolution by using higher pass energy mode.    

   

Figure 9: XPS survey spectrum of a sputter cleaned Au. Emission features are from 
corresponding core levels. 

 The binding energy of core levels depends on the chemical environment of an atom. By 

changing the local bonding environment, the binding energy of core levels can shift accordingly. 
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The chemical shift refers to the difference in binding energies between different chemical states 

of an atom. The shift direction depends on the attractive potential of the nucleus and the 

repulsive interaction with the surrounding electrons in the material. Figure 10 shows a high 

resolution XP-spectrum of the O 1s core level obtained from a thin film of TiO2 nanoparticles. 

Besides a main O2- core level which originates from the bulk oxide, a shoulder at higher binding 

energy is also shown. This shoulder represents the emissions from OH groups which are mostly 

on the surface of the TiO2 nanoparticles [71]. The chemical shift observed in this spectrum is a 

result of the chemical environment change of the oxygen atoms i.e. the chemical environment in 

the bulk is different from the environment on the surface. The higher binding energy of the OH 

group indicates that it is more difficult to remove electrons from the surface than from the bulk. 

The thickness of a thin film deposited on a substrate can be estimated by using the core 

level emissions from the substrate. The electrons excited from the substrate need to travel 

through the deposited thin film. During the passing through, the intensity of core level emissions 

decreases due to the increased probability of scattering. The attenuation of the intensity is a 

function of the thin film thickness. Therefore, the thickness of the deposited thin film can be 

calculated based on Lambert-Beer law 

𝑑 =  −𝜆 × �𝑙𝑛
𝐼
𝐼0
�                                                                      (3) 

in which d is the thickness of the film, λ is the electron mean free path in the film, I is the 

intensity of the core level emission from the substrate measured after the thin film deposition and 

I0 is the intensity before the deposition. This estimation method is based on an assumption that 

the deposited thin film is homogenous since the intensities measured are averaged through the 

whole excited spot. Any existing pinholes, discontinued islands or other film defects can increase 
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the intensity of the core level from the substrate, resulting an underestimated thickness of the 

deposited thin film. 

 

Figure 10: A high resolution XPS spectrum of the O 1s emission obtained from TiO2 
nanoparticles. 

In XPS, core level emissions are described by the nomenclature nlj in which n is the 

principle quantum number, l is the angular momentum quantum number and j is the total angular 
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momentum quantum number. Except for S levels, all the other orbital levels show doublet with 

two different energy states. These two different energy states have different binding energies. 

This is known as spin-orbit splitting [72]. For photoelectrons from p, d and f orbitals, the 

intensity ratio of the two spin orbital peaks are 1:2, 2:3 and 3:4, respectively. Figure 11 shows an 

example of a Ti 2p doublet measured from a thin film of TiO2 nanoparticles. The peak intensity 

ratio between the 2p1/2 and 2p3/2 is 1:2. 

 

Figure 11: A high resolution Ti 2p core level with spin-orbit splitting doublet. 
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2.2.3: Ultraviolet Photoemission Spectroscopy (UPS) 

 Ultraviolet photoemission spectroscopy (UPS) is a type of PES using ultraviolet light as 

radiation source, such as He I emission line with photon energy of 21.2182 eV. With lower 

energy photons compared to XPS, UPS can be used to probe the valence band structure by 

exciting valence electrons out of the atomic outer shell. These electrons have lower binding 

energy (0-10 eV) which can be excited by x-ray as well. The advantage of UPS relies on the fine 

line width of an atomic transition in gas phase (10 meV). It gives UPS a much better resolution 

which enables to probe detailed valence structures of materials.  

Figure 12 shows an example UP-spectrum measured from a thin film of TiO2 

nanoparticles. The secondary edge in the spectrum can be used to determine the sample work 

function which is the minimum energy required for electrons to escape from the surface. At this 

point, scattered secondary electrons barely have enough kinetic energy to escape from the 

surface. The surface conditions of materials have significant influence on the surface work 

function since the electrons have very short mean free path. Even a very thin layer of 

contaminations can change the surface work function dramatically. Therefore, ultra-high vacuum 

testing environment is required to obtain solid measurement data. Valence band emissions can 

provide valuable information from the density of states of the sample surface. The valence bands 

maximum (VBM) of inorganic materials or the highest occupied molecular orbital (HOMO) of 

organic materials obtained from UPS are crucial in the determination of charge injection barriers 

at a hetero-junction interface. 
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Figure 12: The characteristic UP-spectrum of TiO2 nanoparticles. The whole spectrum is 
consisted of four main features which are secondary edge, inelastically scattered electrons, 
valence bands and Fermi level.  

 However, during UPS measurements the sample surface is modified by UV radiation 

resulting in two major artifacts. The first one is the build-up of positive charge during the 

measurement as a result of the incomplete replenishment of the emitted photoelectrons. The 

second artifact is related the surface photochemical reactions induced by the UV radiation. Both 

of these artifacts can shift the secondary electron cutoff and therefore change the measured work 

function significantly. The measurement challenge with regard to the charging artifacts can be 

circumvented by using low intensity X-ray photoemission (LIXPS), which is performed before 

UPS measurements when the sample surface is still free of charging effects. The photochemical 

reactions induced by the UV radiation requires the involvement of surface oxygen defects and 
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the presence of water [73]. This process is called hydroxylation. Therefore, to characterize oxide 

materials using UPS needs to be cautious.    

2.2.4: Low Intensity X-ray Photoemission Spectroscopy (LIXPS) 

 Low intensity X-ray photoemission spectroscopy (LIXPS) was developed to determine 

the true work function of sample surface. When UPS measurements are performed on oxide 

materials, the sample surface can be modified through photochemical reactions [74]. As a result, 

the work function of the sample surface is changed. LIXPS measurements can measure the 

accurate work function by using low intensity of radiation which barely have significant 

influences of surface modifications. By applying LIXPS prior to the UPS measurement, the true 

work function can be determined. If the sample surface is modified by radiations with high 

intensity photon flux (UV or x-ray), the change of the work function can be observed from the 

LIXPS performed after the UPS instantaneously. 

 The reliability of LIXPS measurements has been proved by comparing it with Kelvin 

probe measurements, also known as surface potential microscopy [75]. Beerbom et al. performed 

both of LIXPS and Kelvin probe measurements on a solvent cleaned ITO surface before UPS 

measurements. Then the work function of the sample was measured with both techniques again 

after UPS measurements. The UV radiation induced work function changes were observed in 

their experiments. They conclude that LIXPS is able to detect the work function change caused 

by the UV radiation and provides the true work function of the sample surface.  Figure 13 shows 

the normalized secondary edges measured from LIXPSa (before the UPS measurement), UPS, 

and LIXPSb (after the UPS measurement) on the thin film of TiO2 nanoparticles. A significant 

shift of the secondary edge can be seen after the UPS measurement. This shift indicates the 
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formation of a permanent surface dipole as a result of the photochemical reactions induced by 

the UV radiation during the measurement.  

 

Figure 13: Secondary edge measured by LIXPS and UPS on a thin film of TiO2 nanoparticles. 
The LIXPSa refers to the LIXPS measurement before the UPS measurement. The LIXPSb 
spectrum was obtained from the measurement after the UPS measurement. 

2.3: Ultraviolet-visible Spectroscopy (UV-vis) 

 Ultraviolet-visible spectroscopy is one particular type of absorption spectroscopy in the 

ultraviolet-visible range (200-800 nm). The photon wavelength can be converted into the photon 

energy by using the following equation:  
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𝐸 =
ℎ𝜆
𝑐

                                                                      (4) 

In this equation h refers to Plank constant and c is the speed of light. Therefore, the excitation 

energy in the ultraviolet-visible range is from 6.2 to 1.5 eV. 

 The photons with energy higher than the band gap of materials can be absorbed while the 

others with lower energy will pass through. Therefore, UV-vis spectroscopy is a useful tool to 

estimate the optical band of various materials. 

2.4: Experimental Setup 

 Orbital alignment characterization requires highly clean sample preparation and 

measurement environment due to the sensitivity of surface science. The experiments described in 

this dissertation were carried out in a multi-chamber UHV system in which the sample 

preparation and characterization were performed in-situ, preventing ambient contaminations to 

the best. 

2.4.1: Multi-chamber UHV System 

 A commercial multi-chamber setup was used to deposit targeting materials and to 

characterize electronic structures of samples. The base pressure of this system was 2 x 10-10 mbar. 

Figure 14 shows the top view of this system which consists of three main chambers connected 

via an in-situ transfer system. The electrospray chamber was outfitted with a customized 

electrospray deposition system which enabled direct thin film deposition on a substrate in the 

vacuum chamber. In the transfer chamber, substrates can be sputtered with Ar+ ions (SPECS 

IQE 11/35 ion source) to get rid of surface contaminations. The analysis chamber was equipped 

with an X-ray source (SPECS XR50) and a UV source (SPECS UVS 10/35) to perform PES 

measurements. The emitted photoelectrons were captured and counted by a hemispherical energy 

analyzer (SPECS PHOIBOS 100). 
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A customized glove box was attached to the system through a fast entry lock from which 

samples can be transferred directly from the glove box into the UHV system. The glove box was 

kept in N2 rich environment under a slight overpressure to protect sample surfaces. A diaphragm 

pump was connected in series with two filters in which active carbon and Drierite drying agent 

were filled in order to get rid of contaminations in the glove box.  

 In the electrospray deposition, a bias voltage of -2 kV was applied by a Keithley high 

voltage power supply (248). A Cole-Parmer syringe pump (WU-74900-00) was used and the 

pumping speed was set at 4 mL/h. Hamilton stainless steel cone tip needles (7785-01) and 

Hamilton syringes (22194-U) with a volume of 5 mL were used and purchased from Sigma 

Alrich. 

  

 

Figure 14: The multi-chamber deposition and characterization system. The system consists of 
four major parts. Samples can be loaded either from the glove box or the fast entry lock. 

32 
 



www.manaraa.com

2.4.2: Substrate Preparation 

 The particular substrate used in different experiments is introduced in the corresponding 

chapter and section. The substrates of a 100 nm thick Au thin film on glass slides coated with Ti 

thin film were purchased from EMF Corp. (Ithaca, NY). After cutting the substrates into 1 cm × 

1 cm pieces, they were mounted on customized sample holders with two mounting screws 

providing a good electrical contact between the Au surface and the sample holder to prevent the 

presence of charging effects. Then they were rinsing cleaned with acetone, methanol, 

isopropanol, and deionized water and dried with the nitrogen flow before they were loaded into 

the chamber. After loading, the Au substrates were sputtered with Ar+ ions for 40 min to get rid 

of the surface contaminations. 

 Highly ordered pyrolytic graphite (HOPG) substrates (Mikromasch, USA, “ZYA” quality) 

were prepared in the glove box. The HOPG was glued on the sample holder via conductive silver 

epoxy providing good electrical contact. The HOPG substrate with a pristine surface was 

prepared by cleaving several top layers off using a scotch tape in the glove box before it was 

loaded into the chamber.  

2.4.3: Measurements and Data Analysis 

 The prepared samples were characterized by LIXPSa, UPS, LIXPSb, and XPS in 

sequence. This measurement sequence was specifically designed to evaluate the surface 

modification by the UV radiation and the influence of surface charging artifacts. LIXPS 

measurements were performed by using the stand-by mode of the X-ray gun (Mg Kα, 1253.6 eV, 

0.1 mA emission current). The He I (21.2182 eV) line was used in UPS measurements by 

adjusting the applied voltage to 450 V. For standard XPS measurements, the X-ray gun was 

operated under operation mode (Mg Kα, 1253.6 eV, 20 mA emission current). The analyzer was 
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calibrated using a sputter cleaned Au sample to yield the Fermi level at 0 eV and Au 4f7/2 at 84 

eV.  

A -10 V bias voltage was applied to the sample during all LIXPS and UPS measurements 

in order to separate the sample secondary edge from the analyzer secondary edge and increase 

the yield of secondary electrons. This bias potential was corrected during the data analysis. The 

data analysis was completed with the Igor Pro software (WaveMetrics, Inc.).  
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CHAPTER 3: INTERNAL ORBITAL ALIGNMENT IN OLIGOTHIOPHENE-TIO2 

NANOPARTICLE HYBRIDS 

 This chapter focuses on the measurement of the internal orbital alignment in the 

oligothiophene-TiO2 nanoparticle hybrids by applying a PES base characterization protocol. The 

charge injection barriers and the internal interface dipole are determined through a series of 

meticulously designed experiments. The influences of covalent bonds in the hybrids are 

discussed. 1 

3.1: Introduction 

 Compared to the underlying principles of conventional solar cells, the fundamental 

mechanisms of organic photovoltaic cells mostly are dependent on the properties of the 

interfaces rather than the bulk properties of the materials used to fabricate these devices [76, 77]. 

Because the energy conversion efficiency from photons to electricity strongly depends on the 

efficiency of charge separation in organic and hybrid solar cells. In comparison to the generating 

process of free carriers in conventional solar cells, the charge separation in novel cells requires to 

dissociate relatively strongly bound excitons into free carriers [78]. The dissociation efficiency 

of excitons is largely determined by the orbital line-up at the interface between the donor 

material and the acceptor material in the active layer. By mixing organic materials with inorganic 

1 This chapter has already been published in the Journal of Physical Chemistry C (Li, Z., H. 
Berger, K. Okamoto, Q. Zhang, C. K. Luscombe, G. Cao and R. Schlaf (2013). "Measurement of 
the Internal Orbital Alignment of Oligothiophene-TiO2 Nanoparticle Hybrids." The Journal of 
Physical Chemistry C 117(27): 13961-13970.). Permission is included in Appendix A. 

 
35 

 

                                                 



www.manaraa.com

materials in the active layer, a hybrid photovoltaic structure is formed taking the advantages of 

both materials [79]. Inorganic semiconducting materials, such as TiO2, CdSe and ZnO, can be 

used as the electron acceptors in hybrid structures due to their relatively low electron affinity and 

high electron mobility [18, 80, 81]. Organic conjugated polymers, such as P3HT, MEH-PPV and 

PCPDTBT, can act as the electron donors due to their low band gap and high hole mobility [82-

84]. However, the energy conversion efficiency of such hybrid solar cells is limited by the low 

exciton dissociation efficiency due to the short diffusion length of excitons and unideal band 

offsets at the interface [15]. 

Among various inorganic acceptor materials, TiO2 nanoparticles are attractive candidates 

because their band gap and electronic properties can be tuned through size modification during 

the synthesis process to meet different requirements [85]. In the category of promising organic 

donor materials, thiophene based materials have shown intriguing optoelectronic application 

potentials, such as thin film bulk hetero-junction solar cells and organic thin-film transistors [86, 

87]. Taking the advantages of both materials, novel solar cells with hybrid hetero-junction 

structure can be realized with practical potentials. However, like a typical “hybrid” photovoltaic 

structure, the low exciton separation efficiency at the interface between thiophene based organic 

materials and TiO2 nanoparticles is a challenge in current research due to the short exciton 

diffusion length (about 10 nm) which is difficult to optimize by using physical blending 

fabrication technique [18, 39].  A promising solution to optimize organic/inorganic interfaces is 

to synthesize real hybrid molecules in which organic materials are covalently bonded with 

inorganic materials [88].  Thiophene based oligomers with an ordered and well defined 

molecular structure are ideal prototypical materials to study the properties of internal orbital 

alignments in hybrid molecules [89-91]. The oligothiophene molecules can be covalently grafted 
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onto TiO2 surface through carboxyl anchor groups.  The anchor chemistry is critical for the 

properties of the interface [92]. Pioneering works in this field have been reported. Theoretical 

investigations performed by Serban et al. suggest that carboxyl groups have an affinity to bond 

with TiO2, indicating that carboxyl groups are good anchors to achieve hybridization [93]. Ding 

et al. studied the charge transfer efficiency of poly(thiophene-3-acetic acid)-TiO2 hybrid 

materials fabricated layer by layer using carboxyl groups as anchors [94]. Their results conclude 

that efficient electron transportation from the organic part into the nanoparticles is achieved as 

suggested by the increase of photocurrent. 

The orbital alignment at the internal interface in hybrid materials mostly determines the 

charge separation and transportation. Photoemission spectroscopy (PES) is a powerful surface 

and interface characterization technique which has been used for several decades to characterize 

the orbital alignment at inorganic/organic interfaces [19, 50, 95]. In this chapter, a methodology 

allowing the application of this technique to the internal interface characterization in hybrid 

materials is developed and discussed using oligothiophene-TiO2 nanoparticle hybrids as an 

example.  

3.2: Experimental 

The conventional interface between two types of materials, such as Schottky barriers or 

semiconductor hetero-junction can be fabricated and characterized by a sequence of in-vacuum 

deposition steps. The deposition of one material on the substrate is followed by the deposition of 

another material in several steps. In-between deposition steps PES measurements (XPS and UPS) 

are carried out to obtain corresponding spectra. This can yield a spectral sequence which allows 

the determination of the orbital alignment at the interface. This interface characterization 

technique is well-established and has been applied to a large variety of materials ranging from 
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III-V semiconductors to conductive polymers and bio-molecular materials [96-99]. The 

challenge of the characterization on hybrid internal interfaces is that the bonded two components 

cannot be deposited individually while retaining the property as assembly. This prevents the 

density of states measurement of the individual constituent in the hybrid. Instead, PES 

measurement will yield a superimposed spectrum of both density of states. This prevents a 

straightforward determination of the orbital alignment at the internal interface in hybrids. Hence, 

a different approach needs to be developed and validated.  

The PES based characterization methodology can circumvent this challenge through the 

initial characterizations of the electronic structure of the individual constituent, respectively. The 

constituent materials can be characterized by the PES measurements separately. The electrospray 

deposition technique enables direct characterization after the deposition minimizing the ambient 

contamination. Key properties of the constituent can be obtained. Then, the hybrids will be 

measured to obtain data of core levels. Figure 15 illustrates the complete experimental design 

flow. In the first experiment, pure TiO2 nanoparticles were deposited on a sputter cleaned Au 

substrate followed by a series of PES measurements to determine the work function, VBM and 

species core levels. The data was used in the discussion of the electronic structure determination 

within the hybrid material. In the second experiment, the oligothiophene-TiO2 nanoparticle 

hybrids were deposited on a sputter cleaned Au substrate as well. The core level information of 

the hybrids was extracted from this experiment. In the third experiment, the oligothiophene 

ligands were deposited in several steps and characterized by PES measurements to determine the 

work function, HOMO cutoff and species core levels.  
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Figure 15: Schematic demonstration of the design of experiments. In the first experiment, the 
pure TiO2 nanoparticles are characterized. The hybrid materials are characterized in the second 
experiment. The oligothiophene ligands are characterized in the third experiment. 

The orbital alignment at the internal interface can be determined from the binding energy 

of XPS core levels in the hybrid in comparison to the binding energies measured in the pure 

samples because the energy difference from core levels to VBM/HOMO is a material constant. 

The so determined binding energy shifts of the core levels allow for the calculation of the 

HOMO and valence band maximum energies within the hybrid whose difference corresponds to 

the hole injection barrier. Since the ionization energy is a material constant as well, the internal 

interface dipole in hybrids can be determined accordingly using the VBM and HOMO cutoff of 

the hybrid constituents. The corresponding electron injection barrier energy i.e. band offset of the 

lowest unoccupied molecular orbitals (LUMO) and the conduction bands minimum can be 
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estimated by taking the HOMO-LUMO gap of the oligothiophene and the band gap of the TiO2 

into account. Therefore, the orbital alignment at the internal interface can be determined. Figure 

16 illustrates this determination process from the perspective of band diagrams. 

 

Figure 16: The electronic structure of the individual constituent in isolation and the orbital 
alignment at the internal interface in hybrids. 

 The anatase TiO2 nanoparticles were dispersed in a solution of H2O and ethanol at a 1:1 

ratio with the concentration of 5 mg/mL. The solutions used in the experiments were sonicated 

and stirred vigorously to ensure that the nanoparticles were dispersed well to get rid of undesired 

clusters. The TiO2 nanoparticles were synthesized with a sol made of 0.05 M titanium 

isopropoxide, 0.1 M HCl, and 0.01 M surfactant (Igepal CO-520) through a hydrothermal 

reaction at ~250 °C [100]. The oligothiophene ligands and the oligothiophene-TiO2 nanoparticle 
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hybrids were dissolved in chloroform at the concentration of 1 mg/mL. The molecules used in 

the experiments were provided by the cooperating groups at the University of Washington.  

 The characterizations on the individual component were performed as follows: First, 7 

mL of the solution containing TiO2 nanoparticles was injected into the chamber and deposited on 

a sputter cleaned Au substrate. The measurements on this sample with XPS and UPS yielded a 

sequence of spectra of pure TiO2 nanoparticles. The oligothiophene ligands were deposited with 

the same method on a sputtered clean Au substrate as well. The XPS and UPS measurements 

were performed after the step by step deposition.  The reason for using several deposition steps 

was to achieve a maximized film thickness while preventing significant sample charging effects. 

The next experiment was to deposit oligothiophene-TiO2 hybrid on a sputter cleaned Au 

substrate in several steps. Then the hybrid thin film was characterized by XPS and UPS step after 

step. 

3.3: Results 

 The main objectives of the designed experiments are to measure the charge injection 

barriers and the dipole at the internal interface in the oligothiophene-TiO2 nanoparticle hybrids.  

3.3.1: Characterization of the Electronic Structure of TiO2 Nanoparticles 

 The pure TiO2 nanoparticles were sprayed into the chamber and deposited on a sputter 

cleaned Au substrate followed by the PES measurements to characterize the electronic structure. 

In the deposition 7 mL solution in total was injected into the chamber through the electrospray 

deposition setup. Figure 17 shows the LIXP- and UP-spectra measured before and after the TiO2 

deposition. The center panel shows two complete UP-spectra measured from the substrate (in 

black) and the TiO2 nanoparticles thin film (in blue), respectively. The normalized secondary 

edges obtained from LIXPS measurements before and after the deposition are shown on the left 
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panel. The right panel shows the spectra of the magnified valence features after background 

subtraction. 

 Telling from the left panel in Figure17, the secondary edge shifts to a higher binding 

energy after the deposition of the TiO2 nanoparticles resulting in the presence of a positive 

interface dipole between the deposited layer and the substrate. The values of work function were 

calculated by subtracting the cutoff binding energy from the excitation energy (21.21 eV) and 

taking the analyzer broadening of approx. 0.1 eV into account. Before the deposition of TiO2 

nanoparticles, the cutoff of the Au secondary edge is around 15.8 eV which gives a value of 5.5 

eV for the work function of the Au substrate. After the deposition, the surface secondary edge 

shifts to a higher binding energy level. The corresponding work function for the TiO2 

nanoparticle is determined to be 4.46 eV. The black bottom spectrum in the center graph 

represents a typical UP-spectrum expected for a sputter cleaned Au substrate. The spectral 

features originated from the valence emissions can be identified clearly from 0 to 8 eV. After the 

deposition of TiO2 nanoparticles, these features are suppressed and replaced by the features 

corresponding to the valence emission from the thin film of TiO2 nanoparticles. The TiO2 related 

valence emissions can be identified in the right graph of Figure 17 after background subtraction. 

There are two strong emission peaks, a narrow one at 8 eV and a relative broad one at 6 eV. The 

narrow feature at 8 eV originates from nonbonding π* O 2p orbitals of the TiO2 nanoparticles, 

while the broad one located at 6 eV is from the bonding σ orbitals [101]. It is worthy to notice 

that the small feature around 2.5 eV is related to oxygen vacancies at the TiO2 surface, which are 

located in the band gap [102].  
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Figure 17: LIXP- and UP-spectra of the sample before and after the TiO2 deposition. The graph 
in the left panel is the normalized secondary edge measured with LIXPS before UPS. The 
complete UP-spectra are in the center panel. The right panel shows the valence band features. 
(Reprinted (adapted) with permission from [103]. Copyright 2013 American Chemical Society) 

The normalized secondary edges measured from the thin film of TiO2 nanoparticles in a 

certain order are shown in Figure 18. The bottom LIXP-spectrum shows the initially measured 

secondary edge with LIXPS prior to the UPS measurement. The second spectrum shows the 

secondary edge measured by UPS. The third spectrum is the second LIXP-spectrum measured 

after the UPS measurement. These spectra are shown normalized because the UP-spectrum has a 

magnitudes higher intensity compared to the LIXP-spectrum. With this specific measurement 

order, charging artifacts as well as photochemical surface modifications potentially occurring 
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during the UPS measurement can be detected and evaluated. The difference between the values 

measured from the first LIXPS and UPS usually suggests the presence of small charging artifacts 

induced by UV radiation.  Therefore, all work function values used in the following discussion 

were extracted from LIXPSa measurements, which are free from charging effects. The LIXPSa 

spectrum in Figure 18 reveals that the TiO2 nanoparticle film has a work function of 4.44 eV 

which is consistent with a previous report by Cahen et al. based on Kelvin probe measurements 

[104] and previous measurements by the authors’ group [20]. The second LIXPS performed after 

the UPS measurement indicates the work function change is permanent. It is mostly a result of 

the surface modification caused by photochemical reactions which involve the presence of water 

molecules and photons in UV range. 

Figure 19 shows the corresponding O 1s and Ti 2p core level emissions obtained from 

XPS measurements matching the above experimental sequence. The panels show from left to 

right the O 1s and Ti 2p emission lines measured before and after the deposition of the TiO2 

nanoparticles. The O 1s spectrum in black only shows a weak emission, which indicates that 

there were some oxide related residual contaminations on the substrate surface.  After the 

deposition of the TiO2 nanoparticles on the substrate, a strong O 1s emission peak emerges at 

530.8 eV. This emission line is related to the oxygen atoms in the TiO2 film. The main feature 

relates to the O2- group in the bulk. At higher binding energy level, there is a small feature can be 

identified. This feature is from the OH group on the surface. In the right panel of Figure 19, the 

black flat spectrum measured from the substrate indicates that the substrate is free of Ti atoms. 

After the deposition, the Ti 2p emissions in blue show a similar trend in tandem with the O 1s 

emissions. The appearance of these emission lines confirmed the deposition of the film. The 

results show that the intensity ratio between the Ti 2p3/2 and the Ti 2p1/2 is 2:1, and the binding 
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energy difference between the splitting states is 5.54 eV. The binding energy of the Ti 2p3/2 peak 

is at 459.55 eV. It should be noted that the Ti emissions related to the surface cannot be 

distinguished from the Ti bulk emissions in the spectrum. 

 

Figure 18: The normalized secondary edges measured for the thin film of TiO2 nanoparticle with 
LIXPSa, UPS and LIXPSb in sequence. (Reprinted (adapted) with permission from [103]. 
Copyright 2013 American Chemical Society) 
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Figure 19: The XPS core level (O 1s and Ti 2p) spectra measured from the sample before and 
after the deposition of TiO2 nanoparticles. (Reprinted (adapted) with permission from [103]. 
Copyright 2013 American Chemical Society) 

3.3.2: Characterization of the Electronic Structure of Oligothiophene Ligands 

In this section the oligothiophene ligands were deposited on a sputtered clean Au 

substrate in four steps starting at 0.02 mL by the electrospray technique. The injection volume of 
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each step was well controlled in order to void the influence of charging artifacts which were 

induced by the UV radiation during the UPS measurements. Figure 20 shows the LIXP- and UP-

spectra measured before the deposition and after each deposition step during this experiment. 

The center panel shows a series of complete UP-spectra after normalization. The side panels 

show the normalized secondary edge (left) as well as the valence bands/HOMO region after 

background subtraction (right). The shift of the secondary edge after the first 0.02 mL deposition 

step indicates that there was an interface dipole at the oligothiophene/Au interface. The bottom 

black spectrum in the center panel shows the typical emissions expected for a sputter cleaned Au 

surface.  

During the subsequent four-step deposition series of oligothiophene ligands, the emission 

features of the Au substrate are gradually attenuated and finally replaced by the emissions 

originated from the HOMO of the ligand molecules. This process is manifested evidently from 

the right panel in which the spectra were normalized and the background of each spectrum was 

removed. The emission features from -2 to 14 eV were magnified and shown in the right panel. 

As shown in the right panel, the features corresponding to the valence band emissions of the Au 

substrate can still be seen after the first 0.02 mL deposition step. This means that the ligands film 

is not thick enough to cover the emission from the Au substrate. Furthermore, these features are 

still identifiable after the 0.06 mL deposition in total while the features of the HOMO emissions 

from the ligand film are merging in the spectrum. After the third deposition step with the amount 

of 0.14 mL in total, the emissions from the Au substrate are suppressed and replaced by the 

emissions from the ligands film completely. There are two main features can be identified, a 

broad one around 7 eV and a small one around 3 eV.  
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Figure 20: LIXP- and UP-spectra of each experimental step. The normalized LIXP-spectra are 
shown in the left panel. The complete UP-spectra are shown in the center panel. The magnified 
VB/HOMO regions after background subtraction are shown in the right panel. (Reprinted 
(adapted) with permission from [103]. Copyright 2013 American Chemical Society) 

The values of determined work function for each deposition step are summarized and 

plotted in Figure 21. The figure also shows the corresponding work function values determined 

from LIXPS measurements done before (LIXPS a) and after (LIXPS b) each UPS measurement. 

These trilogy measurements allow the detection of charging artifacts which are induced during 

the UPS measurement by UV radiation. After the fifth deposition, evident charging phenomena 

occurred in the UPS measurement as is apparent from the large discrepancy between LIXPSa 

and UPS derived values. All work function values used in the following were extracted from the 

set of LIXPSa measurements. 
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Figure 21: Work function values obtained from LIXPS and UPS measurements corresponding to 
the four-step deposition sequence. LIXPSa was performed before UPS and LIXPSb was after. 
(Reprinted (adapted) with permission from [103]. Copyright 2013 American Chemical Society) 

Figure 22 shows the corresponding XPS core level lines matching the above UP-spectra 

sequence of each deposition step. The whole figure consists of three panels showing from left to 
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right, the Au substrate-related Au 4f emission line, and the ligands related C 1s and S 2p lines. 

The flat C 1s spectrum in black is as expected for a clean surface after sputtering.  A strong C 1s 

emission line merges at 285 eV after the first deposition, which is originated from the carbon 

atoms of the oligothiophene ligands. Initially, the clean Au substrate does not show any S 2p 

emissions as indicated by the black spectrum in the right panel. After the first 0.02 mL 

deposition step, there is no obvious S 2p line shown in the spectra. The evident S 2p line can be 

identified after the 0.06 mL deposition step. The analyzable spectrum with reasonable noise to 

signal was obtained after the 0.14 mL deposition step from which the binding energy of the S 2p 

doublet was determined. Along with the increase of the deposition amount from 0.02 mL to 0.30 

mL in total, the intensity of the Au 4f emission decreases due to the absorption of emitted 

electrons in the oligothiophene film.  

The thickness of the oligothiophene thin film can be estimated based on the attenuation of 

the Au 4f line. According to the Lambert-Beer law described in the section 2.2.2, the film 

thickness is as a function of the electron mean free path λ which is about 50 Å in oligothiophene 

films [105]. Therefore, the thickness of the film after 0.14 mL deposition step was estimated to 

be 2 nm. In contrast, the ligands related C 1s and S 2p lines (spectra in red) show an intensity 

increase as the amount of oligothiophene increases accordingly.  The C 1s and S 2p emission 

lines remain at the same binding energy throughout the deposition sequence. Hence, it can be 

concluded that no significant charging effects or band bending occurred at the interface to the 

substrate during the entire deposition series. 
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Figure 22: The core level lines (Au 4f, C 1s and S 2p) measured after each deposition step. The 
increasing intensities of the C 1s and S 2p are matching the amount of deposited ligands. 
(Reprinted (adapted) with permission from [103]. Copyright 2013 American Chemical Society) 

3.3.3: Characterization of the Electronic Structure of the Oligothiophene-TiO2 

Nanoparticle Hybrids 

Figure 23 shows the normalized UP-spectra measured after each deposition of the 

oligothiophene-TiO2 nanoparticle hybrids on a sputtered Au substrate. The deposition started at 1 

mL solution injection and ended at 12 mL in total. The bottom spectrum is the UP-spectrum of 

the clean substrate. The typical features from 2 to 8 eV and the Fermi level at 0 eV can be 

identified clearly. After the following deposition of the hybrids, the features of the valence 
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emissions from the Au substrate are gradually attenuated and then completely replaced by the 

emissions originating from the valence bands of the hybrid materials after the third deposition 

step (7 mL injected solution in total). The valence features of the hybrids arise from the 

superposition of the emissions from the valence bands of the TiO2 nanoparticles and the HOMO 

of the oligothiophene ligands. The superposition makes it impossible to distinguish the two 

constituents from each other in the spectra, as manifested by the spectra in Figure 23. Therefore, 

the orbital alignment in the hybrid materials cannot be determined directly from the UP-spectra 

as measured. Even though the UP-spectra measured from the hybrids cannot provide direct 

information of the internal interface, the features from the superposed emissions can still provide 

valuable insights into the electronic structure of the hybrid materials as a complete configuration. 

This is crucial when it comes to evaluate the interface between the hybrid materials and the other 

materials. However, this is not the main objective of this dissertation. 

The corresponding core level spectra (O 1s, Ti 2p, C 1s and S 2p from left to right) 

measured by XPS on the hybrid thin film are shown in Figure 24. The bottom spectra in black 

were obtained from the sputter cleaned Au substrate used in this experiment. The absence of 

strong O 1s and C 1s emissions indicates that the substrate is cleaned by Ar ion sputtering. The 

substrate is free of Ti, C and S and has a minor amount of residual surface contamination. As the 

deposition series begins, the intensities of O 1s, Ti 2p, C 1s and S 2p emissions increase with the 

increase of the amount of hybrid molecules as deposited. Shown from the O 1s spectrum 

measured after the first 1 mL deposition step, a main peak merges at 531 eV which is attributed 

to the O2- group in the TiO2 nanoparticles. In addition, a broad shoulder around 533 eV can be 

seen clearly in the following measurements. This line at higher binding energy level originates 

from the OH groups on the surface of the TiO2 nanoparticles, and relates to the surface defects. 
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These defects are mostly composed of dangling bonds and vacancies [106]. However, the 

oxygen vacancy related Ti 2p emissions cannot be identified from the Ti 2p spectra in this 

experiment. The Ti 2p spectra as displaced in the second panel only shows one strong Ti 2p3/2 

peak around 459 eV. 

 

Figure 23: The UP-spectra of the hybrids measured before and after each deposition step. The 
hybrid molecules were deposited in four steps. (Reprinted (adapted) with permission from [103]. 
Copyright 2013 American Chemical Society) 
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The S 2p emissions in the right panel have a small signal to noise ratio since the 

stoichiometric ratio between S atoms and the other constituent atomic species is small. In 

combination with the small ionization cross section of S, an only weak signal can be measured. 

Thus, the lines measured after the final deposition step (12 mL) with relatively high intensity 

were used in the further evaluation of this interface. There are no band bending or strong 

charging effects are observed because no peak shifts are observed. 

 

Figure 24: The core level lines of O 1s, Ti 2p, C 1s and S 2p from left to right measured by XPS 
for each deposition step of the oligothiophene-TiO2 nanoparticle hybrids. (Reprinted (adapted) 
with permission from [103]. Copyright 2013 American Chemical Society) 

3.3.4: Results of UV-vis and TEM Measurements 

The results of UV-vis measurements on the TiO2 nanoparticles and oligothiophene 

ligands are shown in Figure 24 which can be used to characterize their optical band/HOMO-

LUMO gaps. By fitting a straight line into the absorption edge of the spectrum and determining 
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the intersection with X-axis, a band gap/HOMO-LUMO gap can be estimated. The estimated 

band gap of the TiO2 nanoparticles is 3.45 eV which is slightly larger than a previously measured 

value [96]. But this deviation can be explained with the difference in nanoparticle size, since the 

band gap of nanoparticles strongly depends on their size. The HOMO-LUMO gap of the ligands 

was estimated to be 2.73 eV. 

 

Figure 25: UV-vis absorption spectra of the TiO2 nanoparticles (solid line) and oligothiophene 
ligands (broken line). (Reprinted (adapted) with permission from [103]. Copyright 2013 
American Chemical Society) 
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Figure 26 shows TEM images of the naked TiO2 nanoparticles (A) and of the complete 

hybrid materials (B). Evaluation of the images yielded that the average diameter of the TiO2 

nanoparticles is about 24.9 nm while the mean size for the hybrids is about 25.1. The size 

distribution analysis based on the TEM images are shown in Figure 27. By randomly evaluating 

30 particles from each image, the standard deviation is 2.7 nm for the naked TiO2 nanoparticles 

and 2.6 nm for the hybrids. Therefore, hybridizing TiO2 nanoparticles with oligothiophene 

ligands by covalent grafting does not seem to change the size distribution and shape of these 

nanoparticles significantly as is obvious from the similarity between the two pictures.  

 

Figure 26: Transmission electron microscopy (TEM) images of pure TiO2 nanoparticles (A) and 
oligothiophene-TiO2 nanoparticle hybrids (B). 
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Figure 27: Analysis of size distribution of the naked TiO2 nanoparticles and the hybrids based on 
the TEM images. 

3.4: Discussion 

3.4.1: Determination of the Ionization Energy of the Pure TiO2 Nanoparticles and the 

Oligothiophene Ligands 

 The discussion of the orbital alignment at the internal interface in the hybrid material 

requires the knowledge of the ionization energy of the two constituents. Work function and 

VBM/HOMO cutoffs are the two essential factors associated to the ionization energy which is 

referred as the difference between these two values. Figure 28 illustrates how to determine of the 

ionization energy for both constituents. The bottom panel is for the TiO2 nanoparticles and the 

top panel is for oligothiophene ligands. The VBM of the TiO2 nanoparticles was determined by 

the UPS measurements yielding a value of 3.50 eV. The LIXP-spectrum measured before the 
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UPS measurement was used to determine the work function. The axis unit of the secondary edge 

was converted from binding energy into kinetic energy by taking the energy of excited photons 

into account. The secondary edge cutoff was measured by fitting a straight line down to the axis 

and reading the axis intersection. Accordingly, the work function of the TiO2 nanoparticles was 

determined to be 4.44 eV. Based on the obtained VBM and work function, the ionization energy 

of the TiO2 nanoparticles was calculated to be 7.94 eV, as shown in the bottom panel in Figure 

28. By applying the same determination process, the HOMO cutoff and the work function of the 

oligothiophene ligands were determined by the UPS measurement and the LIXPSa measurement. 

By utilizing the obtained results, the ionization energy of the oligothiophene ligands was 

determined as 6.60 eV. 

 

Figure 28: Determination of the ionization energy for the pure TiO2 nanoparticles and the 
oligothiophene ligands. (Reprinted (adapted) with permission from [103]. Copyright 2013 
American Chemical Society) 
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3.4.2: Determination of the Energy Difference between Core Levels and VBM/HOMO 

Cutoff 

The hole injection barrier at the internal interface within the hybrid cannot be directly 

determined due to the superposition of the valence band emissions from TiO2 and the HOMO 

emissions from oligothiophene ligands as discussed in the above section. This challenge can be 

circumvented through the use of core level emission lines in combination with the energy 

difference between core level and VBM or HOMO. The energy difference between the core level 

binding energy and the VBM/HOMO onset is a material constant and size dependent in 

nanoparticles. Figure 29 shows the Ti 2p(3/2) core level line and the valence region. The Ti 2p(3/2) 

core level line was fitted to yield a binding energy of 459.55 eV. As for the VBM, the value of 

3.50 eV was obtained. By taking these two numbers, the energy difference was calculated to be 

456.05 eV.  

The defect states on the surface of the TiO2 nanoparticles, as marked in the spectrum, 

were excluded from this calculation since they represent localized states within the band gap (see 

Figure 29). A similar procedure is applied to the ligands when it comes to determining the 

energy difference between the S 2p line and the HOMO cutoff, as shown in Figure 30. Because 

of the small ionization cross section of S atoms, the S 2p emission has a low signal to noise ratio 

as measured. This can be partially alleviated through the performance of a peak fit. The S 2p was 

fitted into a doublet peak following the rule of orbital splitting. It allowed the determination of 

the energy difference to be 162.01 eV. The accuracy of these values is approximately ±0.1 eV 

due to the resolution of XPS measurement. 
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Figure 29: Determination of the energy difference between the Ti 2p(3/2) core level and VBM. 
(Reprinted (adapted) with permission from [103]. Copyright 2013 American Chemical Society) 

 

Figure 30: Determination of the energy difference between the S 2p and HOMO cutoff. 
(Reprinted (adapted) with permission from [103]. Copyright 2013 American Chemical Society) 
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3.4.3: Determination and Interpretation the Orbital Alignment at the Internal Interface in 

the Hybrid 

The hole injection barrier at the internal interface can be determined by using the core 

level binding energies of the Ti 2p(3/2) peak and the S 2p peak measured from the hybrid. By 

using the energy difference determined in section 3.4.2 and the Ti 2p(3/2) binding energy 

measured in section 3.3.3, the VBM of the TiO2 nanoparticles in the hybrid was determined to be 

3.48 eV. This value is the same as the VBM of the pure TiO2 nanoparticles film (3.50 eV) within 

the error margin. The HOMO cutoff of the oligothiophene ligands anchored on the surface of 

TiO2 nanoparticles was determined to be 2.75 eV by subtracting the core level to HOMO cutoff 

energy difference (162.01 eV) from the S 2p binding energy (164.76 eV) measured in section 

3.3.3. In comparison to the pure ligands, the S 2p of the hybrid is located at the higher binding 

energy level. This indicates that a dipole originating from the covalent attachment of the ligands 

shifted their energy levels to a lower energy level compared to the pure material. 

Figure 31 shows the orbital alignment at the oligothiophene/TiO2 interface within the 

hybrid materials. The hole injection barrier Φh was determined to be 0.73 eV from the offset 

between the VBM of the TiO2 nanoparticles and the HOMO cutoff of the oligothiophene ligands. 

The electron injection barrier Φe was estimated to be 0 eV by subtracting the hole injection 

barrier and the VBM of the TiO2 nanoparticles from the HOMO-LUMO gap of the 

oligothiophene ligands. It suggests that there is no significant barrier to electron transfer across 

this internal interface. The internal interface dipole eD was determined from the difference 

between the work function of the TiO2 nanoparticles and the oligothiophene ligands. The work 

function of each constituent was obtained by subtracting the VBM/HOMO cutoff from the 
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ionization energy. The calculation yielded a result of 4.46 eV for the nanoparticles and 3.85 eV 

for the ligands. Therefore, the so-determined interface dipole has a value of 0.61 eV. 

 

Figure 31: Schematic of the orbital alignment at the internal interface in the oligothiophene-TiO2 
(covalently bonded) nanoparticle hybrids. (Reprinted (adapted) with permission from [103]. 
Copyright 2013 American Chemical Society) 

The obtained results show that the Fermi level appears to be located at the edge of the 

CB/LUMO in the hybrid. It is well established that surface defects especially oxygen vacancies 

result in n type of doping to the surface of TiO2. It gives rise to a surface potential which has 

strong influences on the charge distribution near the surface. In materials within nano-scale, this 
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effect is further enhanced due to the large surface to volume ratio. As a result, a highly doped 

environment near the surface is generated while the nanoparticles become degenerated [107, 

108]. This may explain why the Fermi level is slightly above the conduction bands in the 

presented results. This interpretation is supported by Liu et al. who observed degeneracy on the 

surface of TiO2 nanoparticles in their research [102]. Similar phenomena are also observed in 

other oxide based materials in which surface defects play a significant role in their electronic 

structures. As for ZnO, Göpel and Lampe concluded that surface defect density can increase the 

surface conductivity dramatically [109]. Carreras et al. confirmed that defects can cause 

degeneracy in Zn doped ITO films [110]. Similarly, it was found that defects created by 

sputtering can also cause surface degeneracy [111].  

The presented orbital alignment shows an internal interface dipole caused by covalent 

bonding. Similar effects in different hybrid systems were also observed and reported by other 

research groups. Liang et al. synthesized a hybrid material with a structure of PPV-CdSe using a 

layer-by-layer approach which enabled covalent crosslinking between PPV and CdSe. In their 

results, the C 1s emission from the amide group in the hybrid shifted to higher binding energy, 

which suggested that the PPV ligands were covalently bonded with the CdSe nanoparticles [112]. 

The PPV-CdSe hybrid system is comparable to the oligothiophene-TiO2 system because the PPV 

ligands act as electron donors and the CdSe nanoparticles act as electron acceptors. Thus, the 

shift of the C 1s line in their experiments is consistent with the shift of S 2p line observed in this 

dissertation. In another research group, Xiong et al. also reported a shift of the HOMO for 

polyaniline in PANI-TiO2 hybrids. In their work, it was observed that the PANI tends to oxidize 

at a lower potential as a result of the decrease in the energy of its HOMO since the PANI ligands 

acted as electron donors and the TiO2 nanoparticles as acceptors [113].  
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In order to understand the interaction between the TiO2 nanoparticles and the 

oligothiophene ligands through covalently bonding, Hard Soft Acid Base (HSAB) principle must 

be introduced and discussed [114]. According to this principle, a hard acid intends to bond with a 

hard base through ionic bonds while a soft acid prefers to bond with a soft base through covalent 

bonds. TiO2 nanoparticles, consisting of metal ions and oxygen ions, are categorized as a typical 

Lewis acid capable of accepting electrons. Oligothiophene ligands can be classified as a Lewis 

base donating electrons to the Lewis acid in the reaction. In this case, the ligands donate 

electrons to the nanoparticles during the hybridizing reaction. As for a Lewis base molecule, 

donating electrons lowers the oxidation potential, shifting the HOMO to a lower energy state. 

This is in agreement with the behavior of the oligothiophene ligands as observed in this 

dissertation.  

More specifically, the dipole observed at the internal interface within the hybrid is a 

direct result of the covalent bonding at the interface between a Ti+ vacancy and the deprotonated 

hydroxyl group O- of the carboxylic acid terminus of the oligothiophene. The electronegativity 

difference between Ti (1.54) and O (3.44) suggests that this hybridizing reaction results in an 

electron transfer from the carboxylic group to the Ti+ defective site in the nanoparticle surface. 

The net result of this process is a lowering of the electronic system on the oligothiophene side 

and an increase of the energy on the nanoparticle side (see Figure 32). This process is further 

amplified since the carboxyl group draws some density of electrons from the thiophene rings, 

resulting in a molecular dipole pointing from the thiophene rings towards the carboxyl group 

[115]. This further enhances the electron transfer from the carboxyl group into the TiO2 

nanoparticles. However, the VBM of the TiO2 nanoparticles stays at the same energy level after 

the hybridizing reaction. This unpredicted result is associated with the particular characteristic of 
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the presented hybrid material. The anchoring S atoms have a similar electronegativity as O atoms. 

When they replace O atoms to bond with Ti atoms on the surface, the energy level of the bonded 

Ti is mostly to be altered within the measurement resolution. 

 

Figure 32: Schematics of the oligothiophene-TiO2 nanoparticle hybrids and the internal interface 
dipole. (Reprinted (adapted) with permission from [103]. Copyright 2013 American Chemical 
Society) 
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CHAPTER 4: ORBITAL ALIGNMENTS AT THE INTERNAL INTERFACE OF THE 

ARYLTHIOL-FUNCTIONIZED CADMIUM SELENIDE HYBRIDS AND THE 

PHYSISORBED INTERFACE 

In this chapter, the orbital alignment at the internal interface of arylthiol functionized 

Cadmium Selenide (ArS-CdSe) hybrid materials was studied through the PES based 

characterization protocol. A physisorbed interface between the arylthiol (ArSH) ligands and the 

CdSe nanoparticles was also investigated for comparison. This interface was created by multi-

step in-vacuum thin film deposition procedure enabling surface characterization after each 

deposition step. All materials were deposited using an electrospray deposition setup outfitted to a 

multifunctional high vacuum system in which XPS and UPS measurements can be performed 

immediately after the deposition without exposure to the ambient atmosphere. Transmission 

electron microscopy (TEM) was used to confirm the morphology and particle size of the 

deposited materials. Ultraviolet-visible (UV-vis) spectroscopy was used to estimate the optical 

band gap of the CdSe nanoparticles and the HOMO-LUMO gap of the ArSH ligands. The 

experiments allowed the conclusion that hybridization through covalent bonds attributes to an 

orbital realignment between the CdSe nanoparticles and the ArSH ligands within the hybrid in 

comparison to the physisorbed interface.  
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4.1: Introduction 

Cadmium selenide (CdSe) nanoparticles are one of the most promising candidates for 

novel hybrid photovoltaic devices and light-emitting diodes (LEDs). It possesses a unique 

electronic structure and can have various absorption regions [45, 116-118]. Current investigated 

inorganic/organic hybrid devices consist of inorganic nanocrystalline materials and conductive 

organic polymers that are fabricated by physical blending methods [119, 120]. These types of 

devices, however, have relatively low light conversion efficiency in comparison to organic-

organic based devices and conventional thin films based devices [121, 122]. One of the major 

constraints is the properties of organic capping ligands. These ligands, such as tri-n-

octylphosphine oxide (TOPO) and pyridine are bonded to the surface of CdSe nanoparticles [123, 

124]. The presence of such organic capping ligands is required in the synthesis process of these 

nanoparticles in order to control the growth rate and passivate the surface to minimize surface 

defects caused by dangling bonds. Furthermore, by capping CdSe nanoparticles with organic 

ligands, a miscibility and solution processability can be obtained to meet the requirement of low 

cost and fast printing deposition techniques. Nevertheless, the mobility of electrons in traditional 

capping ligands is so low that it inhibits the charge transfer across the interface [118]. The 

physisorbed interface impedes exciton dissociation efficiency due to the short diffusion length of 

excitons and unfavorable hetero-junction band offsets [125]. 

 To date, direct attachment of π-conjugated capping ligands with better electron mobility 

and suitable band structure onto CdSe nanoparticles is motivated. The current research focuses 

on π-conjugated thiol molecules which have proven to be a suitable capping material with good 

PL quenching and photoelectric properties attributing the existence of aromatic π-electrons [126]. 

Furthermore, thiol groups are seen commonly in conductive polymers, such as P3HT [51]. 
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Studies also show good results creating inorganic-polymer hybrid nanoparticles with sulfur as 

anchors that attach to the surface of CdSe nanoparticles [127]. Therefore, novel hybrid structures 

with better performance capping materials can be developed and studied. The properties of the 

hetero-junction within the novel hybrid materials dominate the excitons-dissociation and charge-

transfer process. It is thus crucial to understand the orbital alignment at the internal interface. 

The capping material studied in this chapter is arylthiol (ArSH) which has good charge transport 

properties, simple chemical structure and a thiol-anchor group. They are grafted onto the surface 

of CdSe nanoparticles through one pot synthesis method.   

In this chapter, the orbital alignment at the ArSH/CdSe interface with and without 

covalent bonding was characterized and discussed. X-ray photoemission spectroscopy (XPS) 

measurements were performed to determine the core-level binding energies of different species 

in sample molecules. Ultraviolet photoemission spectroscopy (UPS) measurements were carried 

out to obtain the VB/HOMO emissions. The secondary electron cutoff measured by the low 

intensity X-ray photoemission spectroscopy (LIXPS) yielded the true work function of the 

sample without the influence of charging or other surface modification artifacts. However, like a 

typical hybrid material, the superposition of photoemission from inorganic nanoparticles with 

those from organic ligands gives rise to a challenge to obtain the orbital line-up directly. The 

characterization protocol developed in chapter 3 was applied to investigate the internal interface 

within the ArS-CdSe hybrid [103]. The results show that hybridization contributes to the shift of 

the electronic system for both hybrid constituents resulting in different electronic structures in 

comparison to the electronic structure at the physisorbed interface. 

68 
 



www.manaraa.com

4.2: Experimental 

Glass slides coated with 100 nm Au thin films on top of a Ti film were purchased from 

EMF Corp. (Itchaca, NY) and used as substrates in the experiment of creating the physisorbed 

interface. The Au substrate was sputter cleaned with Ar+ ions (SPECS IQE 11/35 ion source) at 

5 keV for approximately 40 minutes prior to depositions. Highly ordered pyrolytic graphite 

(HOPG) substrates were used in the characterization of the ArS-CdSe hybrid materials as well as 

the ArSH ligands. Several top layers of HOPG were removed in the glovebox in order to create a 

pristine surface. Electrical contact between the substrate surface and sample holder was ensured 

to prevent surface charging.  

As discussed in the previous chapter, characterization of internal interface within hybrid 

materials requires the information of each constituent. However, pure CdSe nanoparticles barely 

have dissolubility in any solvent and tend to be oxidized easily. As a result, it is difficult to make 

CdSe thin films directly out of pure CdSe nanoparticles. The CdSe nanoparticles used in this 

dissertation were capped with pyridine ligands. The pyridine molecules capped around the CdSe 

nanoparticles are unstable under a ultra-high vacuum condition which can provide ligand-free 

CdSe thin film for characterization after the deposition in vacuum [128]. Since the CdSe is 

already in vacuum after the deposition, the oxidation problem can be solved. The pyridine 

capped CdSe nanoparticles, ArSH ligands and ArS-CdSe hybrid material were dissolved in 

toluene at a concentration of 1 mg/mL. The synthesis of the ArSH ligands and the hybridization 

of the ArS-CdSe hybrid material were accomplished by Dr. Luscombe’s group at the University 

of Washington. More details can be found in the previous publication [129]. The solutions of the 

materials under investigation were injected into the deposition chamber at a rate of 4 mL/h. A 
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high bias voltage (-2000 V) was applied between the syringe needle tip and the targeting 

substrate as required to perform electrospray deposition. 

The characterization of the internal interface and the physisorbed interface was counted 

on three main experiments. In the first experiment, a physisorbed interface between the ArSH 

ligands and the CdSe nanoparticles was created through multi-step in-vacuum depositions. 

Initially, 1.2 mL solution containing pyridine-capped CdSe nanoparticles was injected into the 

chamber to create a pure CdSe nanoparticle thin film on a clean Au substrate. Followed by a 

series of PES measurements, the electronic information of the CdSe nanoparticles was obtained. 

Subsequently, ArSH ligands were deposited onto the surface of the CdSe film in several steps by 

the same method. The sample surface was characterized after each deposition step. The second 

experiment was carried out to study the ArS-CdSe hybrid materials which were deposited onto a 

HOPG substrate. The valence bands and core level emissions were investigated by PES after the 

deposition. In the third experiment, the ArSH ligands were deposited on a HOPG substrate layer 

by layer in several steps followed by PES measurements after each step. 

After each deposition, the sample was transferred from the deposition chamber to the 

analyzing chamber for characterization with low intensity XPS (LIXPS) (Mg Kα, 1253.6 eV, 

standby mode: 0.1 mA emission current), UPS (He I, 21.2182 eV), and XPS (Mg Kα, 1253.6 eV, 

20 mA emission current) in sequence. In LIXPS measurements, a magnitude lower photon flux is 

used to prevent sample charging artifacts allowing to obtain the true work function of the sample. 

In order to separate sample spectra from the analyzer spectral a -10 V bias voltage was applied to 

the sample. A SPECS Phoibos 100 hemispherical analyzer was used for the analysis of 

photoelectrons and calibrated to yield a standard Cu 2p(3/2) line at 932.66 eV and a Cu 3p(3/2) line 

at 75.13 eV.  
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Figure 33: Schematic illustration of experimental design to determine the orbital alignment at the 
internal interface in ArS-CdSe hybrids and the physisorbed ArS/CdSe interface. 

In addition to the PES experiments, the morphology and the particle size of the pyr-CdSe 

nanoparticles and the ArS-CdSe hybrid materials were confirmed by TEM. The TEM images 

were taken with a FEI Morgagni electron microscope operating under a 60 kV accelerating 

voltage. The UV-vis measurements were carried out on a Thuramed T60 UV-vis spectrometer in 

the estimation of the optical band gap of the CdSe nanoparticles and the HOMO-LUMO gap of 

the ArSH ligands. The data obtained from the PES and UV-vis measurements were further 

analyzed using the Igor Pro software. 
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4.3: Results 

 The experiments described above are designed to measure the charge injection barriers 

and the dipoles at the internal interface within the ArS-CdSe hybrid materials as well as the 

ArSH/CdSe physisorbed interface. The electronic structure characterization of the CdSe 

nanoparticles, the ArSH ligands and the ArS-CdSe hybrid materials are shown in the following 

sections, respectively. 

4.3.1: Characterization of the Electronic Structure of the CdSe Nanoparticles and the 

ArSH/CdSe Physisorbed Interface 

 In this section, an ArSH/CdSe physisorbed interface was created by depositing a thin film 

of ArSH ligands in four steps on top of an initially deposited CdSe thin film. Figure 34 shows the 

LIXP- and UP-spectra of the sample before the deposition and after each deposition step during 

this experiment. The center panel shows the complete UP-spectra, and the side panels show the 

normalized secondary edge (left) measured by LIXPS and the valence bands/HOMO region after 

background subtraction (right). The bottom spectra in blue are expected for a clean Au surface 

after in-situ sputtering for 40 min. Clear features originating from the valence bands can be 

identified clearly from 2 to 8 eV. The Fermi edge is also shown at 0 eV. After deposition of the 

CdSe nanoparticles, these features are suppressed and replaced by those from the valence bands 

of the CdSe nanoparticles. In the consecutive four-step experiments, the CdSe features are 

suppressed and replaced by the emissions from the HOMO of the deposited ArSH ligands.  

The secondary edge measured by LIXPSa contains important information about the 

sample work function. The work function was obtained by subtracting the binding energy of the 

secondary edge cutoff from the excitation energy of incident photons (21.21 eV). The 0.1 eV 

analyzer broadening factor was also considered in the determination process. As after the 

72 
 



www.manaraa.com

deposition of CdSe nanoparticles, the secondary cutoff was measured to be at 17.2 eV which 

corresponds to a work function of 4.1 eV. The work function of the ArSH ligands on top of the 

CdSe film was determined to be 3.7 eV, accordingly.  

The full UP-spectra provide a direct view of valence bands features. As the amount of the 

ArSH ligands on top of the CdSe film increases, the UP-spectra evolve accordingly as illustrated 

in the center panel of Figure 34. Broadening of the secondary region was observed after the 0.30 

mL deposition step, shown from the top spectrum in the center panel. This indicates that the 

presence of charging artifacts has non-neglectable influences on the measured spectra. The 

HOMO/VB emission evolves along with the deposition steps as expected. After the first 0.02 mL 

ligands deposition, a clear feature around 3.6 eV arises, and the main feature around 7 eV shifts 

to a higher binding energy level. The presence of charging artifacts observed after the last 

deposition step (0.30 mL) significantly impacts the HOMO/VB regions. As seen from the top 

spectrum in the right panel, the feature around 3.5 eV and the main feature around 7.5 eV 

become indistinguishable compared to the spectrum obtained from the previous 0.14 mL 

deposition due to the broadening effects caused by the charging artifacts. Thus, the data used in 

the following discussion were derived from the measurement after the 0.14 mL deposition which 

was free of charging artifacts. The valence band maximum (VBM) of the CdSe nanoparticles and 

the HOMO cutoff of ArSH ligands were obtained through the determination of the emission 

onset of the UP-spectra. The VBM of the CdSe nanoparticle thin film was determined to be 2.1 

eV, and the HOMO cutoff of the ArSH ligands was 2.8 eV.  
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Figure 34: LIXP- and UP-spectra measured after each experimental step. The bottom spectra in 
blue were measured on a sputter cleaned Au substrate. The spectra in red were obtained from the 
CdSe thin film after 1.2 mL deposition step. The spectra in black were obtained from a series of 
ArSH ligands deposition.  

The Cd 3d and Se 3d core level lines measured after each experimental step are shown in 

Figure 35. The bottom spectra in blue correspond to the Au substrate before the sequential 

deposition started. The absence of Cd 3d and Se 3d lines validates that the substrate is Cd and Se 

free initially. After the deposition of 1.2 mL CdSe nanoparticles, strong Cd 3d and Se 3d lines 

appear in the spectra as a result of the formation of the CdSe thin film on the substrate. The 

binding energy of the Cd 3d line was measured and used to determine the electronic structure for 

the hybrid materials in the discussion section. The subsequent spectra were obtained from the 
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measurement of the deposition series of the ArSH ligands. As shown in Figure 35, the Cd 3d and 

Se 3d lines attenuate gradually as the amount of the ArSH ligands increases. This indicates that a 

physisorbed interface between the CdSe nanoparticles and ArSH ligands has been created. 

 

Figure 35: XPS spectra of Cd 3d and Se 3d core level emissions measured before and after each 
deposition step. The blue spectra was measured before the deposition from a clean Au substrate. 
The red spectra were obtained after the first deposition of 1.2 mL CdSe nanoparticles. The black 
spectra were measured after each deposition step of the ArSH ligands. 
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4.3.2: Characterization of the Electronic Structure of the ArSH Ligands 

 In order to characterize the electronic structure of the ArSH ligands, a HOPG substrate 

with a pristine surface was prepared and characterized before the deposition. Figure 36 shows the 

LIXP- and UP-spectra measured before and after each deposition step in this experiment. The 

left panel shows the normalized secondary edge measured by LIXPS during the experiment. The 

center panel shows the full UP-spectra obtained from each step. The panel on right side shows 

the magnified UP-spectra near the Fermi level after normalizing and background subtraction. 

The typical emissions expected for a pristine HOPG surface prepared in the glove box are shown 

in green. The signature emission of HOPG around 13.5 eV can be seen clearly from the full UP-

spectrum. The valence band structure also can be seen clearly from 0 to 12 eV in the panel on 

right side. These features are suppressed and finally replaced by the features related to the 

HOMO emissions of the ArSH molecule after the first 0.02 mL deposition.  

To be more specific, there are two main features of the ArSH HOMO. One is at 3.5 eV, 

and the other one is at 7.5 eV. After the last deposition step, a shift and broadening of the 

secondary edge were observed as shown from the top spectrum in the center panel of Figure 36, 

indicating the appearance of charging artifacts encountered during UV radiation exposure. The 

charging artifacts gave rise to a shift and broadening of the HOMO region as well, which can be 

seen clearly from the top spectrum in the right panel of Figure 36. Therefore, the data measured 

from the 0.08 mL experimental step was used in the further analysis. The work function and 

HOMO cutoff of the ArSH ligands on the HOPG substrate were determined to be 4.3 eV and 2.2 

eV, respectively. 
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Figure 36: LIXP- and UP-spectra of each experimental step as the deposition of the ArSH 
ligands on top of a pristine HOPG surface. The deposition started at 0.02 mL and ended at 0.20 
mL in total. 

Figure 37 shows XPS core level lines matching the above UP-spectra sequence of each 

experimental step. The O 1s, C 1s, and S 2p lines are shown from left to right.  Initially, S 2p 

emissions are absent in the spectrum measured on the HOPG substrate. This indicates that there 

is no sulfur on the surface before the deposition started. A small O 1s peak can be seen due to the 

existence of an insignificant amount of contaminants on the surface. A strong C 1s emission line 

is located at 284.5 eV as expected for a HOPG substrate. The intensity of the C 1s decreases in 

the deposition series as a result of the absorption of the electrons emitted from the HOPG in the 

of ArSH film. Meanwhile, the ligands layer related O 1s and S 2p lines show an increasing 
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intensity as more ligands were deposited on the surface.  Since the sample surface suffered 

severe charging effects after the last deposition step, the binding energy of S 2p core level line 

measured from 0.08 mL step was used in the further discussion.  

 

Figure 37: XPS spectra of O 1s, C 1s and S 2p core level lines measured for each experimental 
step in the ArSH ligands characterization experiment. 

4.3.3: Characterization of the ArS-CdSe Hybrid Materials 

Figure 38 shows the UP-spectra measured to characterize the ArS-CdSe hybrid materials. 

The hybrid was deposited on an HOPG substrate in seven steps. The bottom spectrum in green is 

a typical UP-spectrum of HOPG surface with signature emissions, which are gradually 

attenuated and then completely disappear after the third step where the emissions from the hybrid 

materials are dominant. The measured hybrid emissions are composed of photoelectrons from 
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both constituents. The interface dipole and the band offsets at the internal interface within the 

hybrid materials cannot be directly determined from the UP-spectra as measured. The species 

core level emissions of the hybrid materials are needed to solve this problem.   

 

Figure 38: UP-spectra of each deposition step of the ArS-CdSe hybrid materials. The deposition 
started with injecting 0.02 mL solution and ended at 1.92 mL solution in total. The features 
related to HOPG emissions are disappeared after the 0.08 mL step. 
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Besides the UP-spectra measured before and after each step, the corresponding O 1s, Cd 

3d, C 1s and S 2p core level lines were also measured by XPS as shown in Figure 39 from left to 

right. The green spectra in each panel are corresponding to the core level emissions measured 

from a pristine HOPG substrate. A small O 1s peak can be seen. This is most likely related to 

residual contamination on the HOPG surface. A similar contamination related O 1s emission was 

also observed in the experiment described in section 4.3.2. The surface of the HOPG substrate is 

Cd and S free, as indicated by the absence of Cd 3d and S 2p emission lines. Also for a typical 

HOPG substrate, a strong C 1s emission can be seen around 284.5 eV.  

As the deposition series began, the O 1s, Cd 3d and S 2p emissions evolved as a function 

of the deposited amount. No significant changes of the O 1s were observed until the fourth 

deposition was carried out (in total 0.20 mL solution was injected). The Cd 3d emissions were 

barely seen in the first two depositions. In the following deposition steps, the intensity of Cd 3d 

was increasing. The strong C 1s emission from the HOPG substrate at 284.5 eV can be identified 

in all experimental steps. After the third deposition (0.08 mL in total), a peak at 285.8 eV was 

observed. This peak is associated with the carbon atoms in the hybrid materials. As the injected 

solution reached 0.20 mL in total, it became dominant in the C 1s spectra. The S 2p emissions 

have a small signal to noise ratio since the stoichiometric ratio between S atoms and the other 

constituent atomic species is small as well as the cross section of S atoms is small. This explains 

why the S 2p peak is still barely seen when 0.20 mL solution was injected. A relatively strong S 

2p peak was obtained after the last deposition step, and its binding energy was used in the further 

evaluation of this interface.  
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Figure 39: The XPS core level lines (O 1s, Cd 3d, C 1s and S 2p from left to right) measured 
from each deposition step of the ArS-CdSe hybrid materials. The green spectra were obtained 
from a pristine HOPG substrate. 

 

4.3.4: TEM Images of the Pyr-CdSe Nanoparticles and the ArS-CdSe Hybrids 

The properties of nanoparticles, including the electronic structure, highly depend on their 

size and shape due to quantum confinement effects [130, 131]. Figure 40 shows the TEM images 

of the ArS-CdSe hybrid materials on the left side and the pyridine capped CdSe nanoparticles on 

the right side. The average size of pyridine capped CdSe nanoparticles is around 3.1 nm with a 

well-defined spherical shape and a standard deviation of 0.2 nm by randomly counting 20 

particles. The ArS-CdSe hybrid materials, as shown on the left side in Figure 40, also have a 

diameter of approximately 3.2 nm with a standard deviation of 0.3 nm. The similar particle size 

indicates that the CdSe nanoparticles will have consistent properties as a constituent of the 

hybrid materials. The exciton binding energy in CdSe nanoparticles is dependent on the particle 
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size. Since the quantum confinement dominates nanoparticle properties, the exciton binding 

energy has to be taken into account when it comes to determine the band gap of the CdSe 

nanoparticles. The exciton binding energy in CdSe nanoparticles with a particle size around 3 nm 

is 0.4 eV [132]. 

 

Figure 40: TEM images of the pyridine capped CdSe nanoparticles (right) and the ArS-CdSe 
hybrid materials. 

4.4: Discussion 

In the following section, the orbital alignment at the ArSH/CdSe physisorbed interface 

was determined and compared to the line-up at the internal interface within the hybrid materials. 
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4.4.1: Determination and Interpretation of the Orbital Alignment at the Physisorbed 

ArSH/CdSe Interface 

The summarized orbital alignment at the ArSH/CdSe physisorbed interface is depicted in 

Figure 41. The optical band gap of the CdSe nanoparticles (2.1 eV) and the HOMO-LUMO gap 

of the ArSH ligands (4.2 eV) were estimated from UV-vis measurements. The exciton binding 

energy of 0.4 eV was taken into account to determine the true band gap of the CdSe 

nanoparticles which is 2.5 eV. As for CdSe nanoparticles, the density of states (DOS) tail in the 

conduction bands is close to the Fermi level according to the theoretical calculations by Pokrant 

and Whaley [133]. Our experimental results are in agreement with their calculations showing a 

highly degenerate surface of the CdSe nanoparticles. The Fermi level is located at the edge of the 

conduction bands. The hole injection barrier Φh was determined by the offset between the VBM 

of the CdSe nanoparticles and the HOMO cutoff of the ArSH ligands, yielding a value of 0.7 eV. 

The electron injection barrier Φe was determined to be 1.0 eV by subtracting the hole injection 

barrier (0.7 eV) and the band gap of CdSe nanoparticles (2.5 eV) from the HOMO-LUMO gap of 

the ArSH ligands (4.2 eV). The interface dipole eD was determined by taking the work function 

of the CdSe nanoparticles (ΨCdSe = 4.1 eV) and comparing it to the work function of the ArSH 

ligands, which yielded eD = 0.4 eV.  

The mechanism behind the formation of this interface dipole relates to the charge 

donation from the ArSH ligands into the CdSe nanoparticles across the interface when the ArSH 

ligands make contact with the CdSe nanoparticles. Albero et al. reported that aromatic thiol 

derivatives have inner-molecule dipole moment. It points towards the sulfur atom resulting in an 

unbalanced electron density in the molecule due to the highly oxide tendency of the sulfur [134]. 

There is a similar dipole moment within the ArSH ligands due to the strong oxidation property of 
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the sulfur atom on the edge. The sulfur atom draws electrons from the rest of the molecule 

towards it. This mechanism can further enhance the charge transfer across the interface when the 

ligands made contact with the CdSe film through the sulfur atoms.   

 

 

Figure 41: The schematic of the orbital alignment at ArSH/CdSe physisorbed interface. 

4.4.2: Determination and Interpretation of the Orbital Alignment at the Internal Interface 

within the ArS-CdSe Hybrid Materials 

Determination of the orbital alignment at the internal interface within the ArS-CdSe 

hybrid materials requires knowledge of the ionization energy of its two constituents. The 
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ionization energy is defined as the energy gap from the VBM/HOMO cutoff to the vacuum level. 

Figure 42 (A) shows the ionization energy determination for the CdSe nanoparticles. The values 

of the VBM and work function were obtained from the experiment described in section 4.3.1. By 

adding them together, the ionization energy of the CdSe nanoparticles was calculated to be 6.2 

eV. Figure 42 (B) shows the magnified HOMO emission region (left) and the secondary edge of 

ArSH ligands (right) obtained from the experiment performed in section 4.3.2. The ionization 

energy of the ArSH ligands was determined to be 6.5 eV.  

 

Figure 42: Ionization energy determination of the CdSe nanoparticles (A) and the ArSH ligands 
(B). The magnified VB/HOMO regions were obtained from the UPS measurement while the 
secondary edge was measured by LIXPSa. 
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In order to define the orbital alignment at the internal interface within the ArS-CdSe 

hybrid materials, the VBM and the work function of the CdSe constituent are required. For a 

given material the energy difference from the species core level to the VBM is a material 

constant. Based on this principle the VBM of the CdSe constituent can be determined by 

subtracting the Cd 3d5/2 to VBM energy difference from the binding energy of the Cd 3d5/2 core 

level line measured from the hybrid materials in section 4.3.3. The left graph of Figure 43 (A) 

shows the Cd 3d5/2 core level which was measured from the experiment described in section 

4.3.1, yielding a binding energy of 405.8 eV. By subtracting the VBM of 2.1 eV, the energy 

difference from the Cd 3d5/2 to the VBM was determined to be 403.7 eV. The binding energy of 

the Cd 3d5/2 of the ArS-CdSe hybrid materials was measured to be 406.2 eV in section 4.3.3. By 

subtracting the energy difference 403.7 eV from the Cd 3d5/2 binding energy of 406.2 eV, the 

VBM of the CdSe constituent within the hybrid materials was calculated to be 2.5 eV.  

In comparison to the pure CdSe nanoparticles, the binding energy of the Cd 3d5/2 

measured from the ArS-CdSe hybrid materials shifts to a higher position by 0.4 eV (from 405.8 

eV to 406.2 eV). As mentioned above, the pyridine capped CdSe nanoparticles were used to 

characterize the electronic structure of pure CdSe nanoparticles. The pyridine shells around the 

CdSe nanoparticles were peeled off leaving pure CdSe nanoparticles behind on the substrate 

when they were exposed to ultra-high vacuum after the deposition. Taylor et al. reported that 

nearly 70% of the CdSe nanoparticle surface is composed of Cd atoms and the other 30% is Se 

atoms [135]. Therefore, after in-vacuum deposition, the surface of the pure CdSe nanoparticles is 

rich of Cd atoms with dangling bonds which were previously bonded to pyridine molecules 

through nitrogen atoms. The Cd atoms with unoccupied dangling bonds are located at relative 

low binding energy level in XPS spectra. After hybridizing the CdSe nanoparticles with the 
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ArSH ligands, the Cd atoms on the surface were covalently bonded with the ArSH ligands 

through sulfur atoms. As a result, the dangling bonds on the surface of CdSe nanoparticles were 

saturated through the hybridizing process resulting in the shift of Cd 3d5/2 to a higher binding 

energy as observed in the XPS spectra. 

 

Figure 43: (A) Determination of the energy difference between the Cd 3d5/2 core level and the 
VBM of clean CdSe nanoparticles. The binding energy of Cd 3d5/2 is 405.8 eV and the VBM is 
2.1 eV. The energy difference was determined to be 403.7 eV. (B) Determination of the energy 
difference between the S 2p core level and the HOMO cutoff of ArSH ligands. The binding 
energy of S 2p is 163.6 eV and the HOMO cutoff is 2.2 eV. The energy difference was 
determined to be 161.4 eV. 
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In order to determine the HOMO cutoff of the ArSH constituent in the hybrid materials, 

the energy difference from the S 2p line to the HOMO cutoff is needed. Figure 43 (B) shows 

how to determine it from the XP- and UP-spectrum measured from the ArSH ligands. The S 2p 

doublet was fitted to be at 163.6 eV and the HOMO cutoff was determined to be 2.2 eV. By 

subtracting 2.2 eV from 163.6 eV, it yielded an energy difference of 161.4 eV. The binding 

energy of the S 2p measured from the hybrid materials was 164.4 eV. By subtracting the energy 

difference of 161.4 eV from the binding energy of the S 2p line in the hybrid, the HOMO cutoff 

of the ArSH constituent was determined to be 3.0 eV.  

By summarizing the results above, Figure 44 was depicted, showing the orbital alignment 

at the internal interface in the ArS-CdSe hybrid materials. The orbital alignment shows a smaller 

hole injection barrier of 0.5 eV compared to the barrier at the physisorbed interface which is 0.7 

eV. A 0.2 eV interface dipole is observed as a result of the electronic system shift for both of the 

constituents. The mechanism behind the electronic system shift of the CdSe constituent was 

discussed above. In order to understand the basic mechanism behind the electronic system shift 

on the ArSH side, the hard-soft-acid-base (HSAB) concept needs to be discussed [114]. The 

hard-soft-acid-base (HSAB) is a universal law to describe reactions between organic materials 

and inorganic materials. In this concept, the interaction between the metal atoms and the 

surrounding ligands involves an electron transfer process in which the metal acts as an electron 

acceptor (Lewis acid) and the ligand acts as an electron donor (Lewis base). The surrounding 

ligands donate electrons to the unoccupied orbitals of the metal atoms. Therefore, the soft ArSH 

ligands bond to the surface of the soft CdSe nanoparticles filling the Cd orbitals covalently, 

which results in the shift of the S 2p core level to a higher binding energy. This theory is also 
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confirmed by Liu et al. and supported by the electronic system shift of the ArSH constituent 

observed in the presenting experiments [126]. 

 

Figure 44: The schematic depiction of the orbital alignment at the internal interface within the 
ArS-CdSe hybrid materials. An internal interface eD was observed with a value of 0.2 eV. The 
electron injection barrier is 1.2 eV while the hole injection barrier is 0.5 eV. 

It is worthy to notice that the covalent bonds play an important role in modifying the 

orbital alignment at the internal interface. The sulfur atom attracts electrons from the Cadmium 

atom when they make contact forming a covalent bond due to the oxidization property of sulfur 

atoms as shown in Figure 45. As a result of the electron density redistribution at the interface, an 

inner-molecule field can be built up. With the new built up field, the electron transfer at the 
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interface can be enhanced. Furthermore, when light generated excitons diffuse to the internal 

interface, with shorter diffusion length compared to the physical blending, the net result can 

facilitate the dissociation of the excitons. This mechanism is crucial for the improvement of 

hybrid photovoltaic devices. After the dissociation, electrons can transport into the CdSe 

nanoparticles easily due to the large electron injection barrier at the interface which can also 

prevent charge-recombination.  

 

Figure 45: The schematic of the ArS-CdSe hybrid materials. The covalent bond between sulfur 
atom and Cadmium atom has significant influences on the orbital alignment at the interface. 
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CHAPTER 5: CONCLUSIONS AND OUTLOOK 

 The work presented in this dissertation successfully employed PES measurements to 

characterize the orbital alignment at the internal interface within hybrid materials. The 

investigation showed that hybridizing organic ligands to inorganic nanoparticles through 

covalent bonding has significant impacts on the electronic structure of the interface. 

 The study aimed at developing a PES based characterization protocol that allows for the 

determination of the orbital alignment at the hybrid internal interface. The research interest on 

hybrid materials is motivated by the low efficiency of hetero-junction solar cells which is 

believed to be caused by inefficient charge-dissociation at the interface between inorganic 

nanoparticles and conjugated polymers. A promising approach to solve this problem is the 

synthesis of a hybrid material in which the organic material is hybridized with the inorganic 

nanoparticles by covalent bonding. The key to developing an ideal hybrid material with an 

improved efficiency is to find constituents with matching electronic structures to facilitate charge 

dissociation and transportation at the interface after the hybridization. A PES base 

characterization protocol is needed to determine the orbital alignment at the hybrid internal 

interface. 

 In the first part, a prototypical hybrid material synthesized by hybridizing TiO2 

nanoparticles with oligothiophene ligands was investigated. Since photon excited emissions from 

both constituents are superimposed to yield hybrid-unique emission features in UP-spectra, it is 

impossible to determine the orbital alignment at the internal interface directly. The proposed 
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characterization protocol circumvents this challenge by characterizing the isolated constituents 

first and comparing the obtained binding energies of the core level emissions to those measured 

from the hybrid. The comparison allows for the direct quantification of the charge injection 

barriers and the dipole potential at the internal interface. It was found that the electronic system 

of the oligothiophene shifted to lower energy level relative the TiO2 system after the 

hybridization. An internal interface dipole potential of 0.61 eV was observed as a result of the 

covalent bonding. The resulting orbital alignment features a significant hole injection barrier of 

0.73 eV and only an insignificant electron injection barrier of 0 eV. This internal interface 

appears unideal for the purpose of improving exciton dissociation. Even though electrons can 

transfer easily across the interface, a significant rectifying electron injection barrier is needed to 

prevent the electrons from returning and recombining with the holes on the ligands side. This 

points out that this interface needs to be redesigned with an interface dipole capable of shifting 

the electronic system of ligands to a higher energy level thereby producing favorable band 

offsets. 

 The second part involved determining and discussing the orbital alignment at the internal 

interface within the ArS-CdSe hybrid materials. In addition to that, a physisorbed ArSH/CdSe 

interface was created by multi-step deposition technique and characterized to compare with the 

internal interface. As for the physisorbed interface, charge transfer across the interface was 

observed as indicated by the appearance of a dipole potential. The polarity of this dipole 

demonstrates that the ArSH ligands donate electrons to the CdSe nanoparticles when they make 

contact with each other. A large electron injection barrier of 1.0 eV was found at the interface 

which can block electrons from returning to the ArSH ligands and recombining with holes. It 

was observed that a hole injection barrier of 0.7 eV existed at the interface. However, the 
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polarity of this barrier does not favor the hole transfer from the CdSe nanoparticles to the ArSH 

ligands. 

 The orbital alignment at the internal interface within the ArS-CdSe hybrid materials 

demonstrates that hybridizing the ArSH ligands with the CdSe nanoparticles by covalent bonding 

realigns the interface line-up. It was found that the electronic system of the CdSe nanoparticle 

shifted down by 0.4 eV. This is attributed to the saturation of the unoccupied bonds of the Cd 

atoms on the surface due to the formation of Cd-S bonds. Meanwhile, the electronic system of 

the ArSH ligands shifted down by 0.2 eV as a result of the electron donation into the 

nanoparticles. Compared to the physisorbed interface, a smaller interface dipole of 0.2 eV was 

found. The injection barrier at this interface was found to be 1.2 eV which was 0.2 eV larger than 

that at the physisorbed interface while a smaller hole injection (0.5 eV) was found at the internal 

interface. 

 The conducted experiments have proved the feasibility and practicability of the proposed 

PES based characterization protocol. Once sophisticated hybrid materials are available, the 

protocol can provide detailed information regarding to the orbital alignment which can be 

ultimately used to improve the synthetic strategy and guide the selection of constituent materials 

increasing overall efficiency.  
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